Collaborative Research: OAC Core: Stochastic Simulation Platform for Assessing Safety Performance of Autonomous Vehicles in Winter Seasons

合作研究:OAC Core:用于评估冬季自动驾驶汽车安全性能的随机仿真平台

基本信息

  • 批准号:
    2106965
  • 负责人:
  • 金额:
    $ 19.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

The safety of an autonomous vehicle (AV) highly depends on the generalization capability of its automation systems (e.g., perception and decision-making) when being deployed in diverse physical environments. Although the current commercialization of AVs has been shown to improve traffic safety, AV safety performance under adverse driving conditions in winter seasons still lacks comprehensive evaluation. To bridge the research gap, this project aims to develop a stochastic simulation platform, which examines the efficiency, reliability, and safety of AVs, to prevent costly mistakes in widespread field implementations. The research methods use a foundation of machine learning and physics principles to formulate an integrated and hybrid approach to model stochastic vehicle behaviors in traffic streams. Potential AV safety risks under adverse driving conditions will be assessed with dynamic modeling of vehicle behavior. The project will produce an open-source and cloud-based simulation platform that allows public access to test vehicle automation systems. The simulation models can be improved over time through the use of an online machine learning architecture. The research activities will be closely integrated with a set of education and outreach activities that include (i) incorporating advanced computational techniques into the curriculum, (ii) sparking the interests of younger generations in science and engineering by local K-12 outreach efforts and summer camps, and (iii) broadening the participation of underrepresented student groups in computing through the artificial intelligence club at San Diego State University, a Hispanic serving institution. This multidisciplinary research project aims at contributing improved algorithms in simulation and fundamental knowledge in computing to building an advanced cyberinfrastructure toolkit. The project focuses on producing a stochastic simulation platform that can evaluate the capabilities of AVs' automated driving systems. The motivation is to produce a reliable tool that can model stochastic vehicle behaviors, study vehicle dynamics, and predict potential AV safety risks under adverse driving conditions in winter. To this end, the project will first leverage the physics principles of a microscopic traffic model to regularize the machine learning process for simulating vehicle interactions. Second, both multi-vehicle and single-vehicle crash probabilities in mixed traffic will be predicted by integrating the traffic simulation model with a new vehicle dynamics model. The stochastic vehicle motions will then be studied to assess AV safety performance on icy/snowy pavement. Third, the models will be integrated into an open-source software package with comprehensive documentation and multiple application cases. The expected deliverable will be a public cloud-based platform that is easy to access and is capable of incorporating new data streams for model improvement. After validating the models with field data, the project will connect the simulations with existing automated driving systems for testing. The project can have broad impacts on other science and engineering fields, such as physics-supported artificial intelligence, smart and autonomous systems, and other research domains that depend on simulated data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自动驾驶车辆(AV)的安全性高度依赖于其自动化系统的泛化能力(例如,感知和决策)。虽然目前的商业化的自动驾驶汽车已被证明可以改善交通安全,但在冬季不利的驾驶条件下,自动驾驶汽车的安全性能仍然缺乏全面的评估。为了弥合研究差距,该项目旨在开发一个随机模拟平台,该平台可以检查自动驾驶汽车的效率,可靠性和安全性,以防止在广泛的现场实施中出现代价高昂的错误。研究方法使用机器学习和物理原理的基础,制定一个综合和混合的方法来模拟交通流中的随机车辆行为。将通过车辆行为的动态建模来评估不利驾驶条件下的潜在AV安全风险。该项目将产生一个开源和基于云的仿真平台,允许公众访问测试车辆自动化系统。通过使用在线机器学习架构,可以随着时间的推移改进仿真模型。研究活动将与一系列教育和外联活动紧密结合,包括:(一)将先进的计算技术纳入课程,(二)通过当地K-12外联工作和夏令营激发年轻一代对科学和工程的兴趣,以及(iii)通过圣地亚哥州立大学的人工智能俱乐部,扩大代表性不足的学生群体对计算的参与,西班牙裔服务机构 这个多学科研究项目旨在为建立先进的网络基础设施工具包提供改进的模拟算法和计算基础知识。该项目的重点是建立一个随机模拟平台,可以评估自动驾驶汽车自动驾驶系统的能力。我们的动机是生产一个可靠的工具,可以模拟随机车辆行为,研究车辆动力学,并预测在冬季不利的驾驶条件下潜在的AV安全风险。为此,该项目将首先利用微观交通模型的物理原理来规范机器学习过程,以模拟车辆交互。其次,通过将交通仿真模型与新的车辆动力学模型相结合,预测混合交通中多车和单车碰撞概率。然后将研究随机车辆运动,以评估冰雪路面上的自动驾驶安全性能。第三,这些模型将被集成到一个开源软件包中,该软件包具有全面的文档和多种应用案例。预期交付的成果将是一个基于云的公共平台,该平台易于访问,并能够纳入新的数据流以改进模型。在用现场数据验证模型后,该项目将把模拟与现有的自动驾驶系统连接起来进行测试。该项目可以对其他科学和工程领域产生广泛的影响,例如物理支持的人工智能,智能和自主系统以及其他依赖模拟数据的研究领域。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaobai Liu其他文献

Research of test modeling and analyzing of warship power system
Nonnegative Tensor Cofactorization and Its Unified Solution
非负张量协因式化及其统一解
  • DOI:
    10.1109/tip.2014.2327806
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Xiaobai Liu;Qian Xu;Shuicheng Yan;G. Wang;Hai Jin;Seong
  • 通讯作者:
    Seong
V3I-STAL: Visual Vehicle-to-Vehicle Interaction via Simultaneous Tracking and Localization
Retraction Note to: Linc00152 promotes malignant progression of glioma stem cells by regulating miR-103a-3p/FEZF1/CDC25A pathway
  • DOI:
    10.1186/s12943-022-01660-3
  • 发表时间:
    2022-09-29
  • 期刊:
  • 影响因子:
    33.900
  • 作者:
    Mingjun Yu;Yixue Xue;Jian Zheng;Xiaobai Liu;Hai Yu;Libo Liu;Zhen Li;Yunhui Liu
  • 通讯作者:
    Yunhui Liu
Learning Compositional Shape Models of Multiple Distance Metrics by Information Projection
通过信息投影学习多个距离度量的组合形状模型

Xiaobai Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaobai Liu', 18)}}的其他基金

CRII: RI: Reasoning Geometric Commonsense for 3D Image/Video Parsing
CRII:RI:3D 图像/视频解析的几何常识推理
  • 批准号:
    1657600
  • 财政年份:
    2017
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
  • 批准号:
    2414474
  • 财政年份:
    2024
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403312
  • 财政年份:
    2024
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
  • 批准号:
    2414185
  • 财政年份:
    2024
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Learning AI Surrogate of Large-Scale Spatiotemporal Simulations for Coastal Circulation
合作研究:OAC Core:学习沿海环流大规模时空模拟的人工智能替代品
  • 批准号:
    2402947
  • 财政年份:
    2024
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403313
  • 财政年份:
    2024
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Learning AI Surrogate of Large-Scale Spatiotemporal Simulations for Coastal Circulation
合作研究:OAC Core:学习沿海环流大规模时空模拟的人工智能替代品
  • 批准号:
    2402946
  • 财政年份:
    2024
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: CropDL - Scheduling and Checkpoint/Restart Support for Deep Learning Applications on HPC Clusters
合作研究:OAC 核心:CropDL - HPC 集群上深度学习应用的调度和检查点/重启支持
  • 批准号:
    2403088
  • 财政年份:
    2024
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: CropDL - Scheduling and Checkpoint/Restart Support for Deep Learning Applications on HPC Clusters
合作研究:OAC 核心:CropDL - HPC 集群上深度学习应用的调度和检查点/重启支持
  • 批准号:
    2403090
  • 财政年份:
    2024
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC: Core: Harvesting Idle Resources Safely and Timely for Large-scale AI Applications in High-Performance Computing Systems
合作研究:OAC:核心:安全及时地收集闲置资源,用于高性能计算系统中的大规模人工智能应用
  • 批准号:
    2403399
  • 财政年份:
    2024
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: CropDL - Scheduling and Checkpoint/Restart Support for Deep Learning Applications on HPC Clusters
合作研究:OAC 核心:CropDL - HPC 集群上深度学习应用的调度和检查点/重启支持
  • 批准号:
    2403089
  • 财政年份:
    2024
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了