Collaborative Research: RI: Medium: Submodular Information Functions with Applications to Machine Learning

合作研究:RI:中:子模信息函数及其在机器学习中的应用

基本信息

  • 批准号:
    2106937
  • 负责人:
  • 金额:
    $ 59.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-15 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

A growing number of machine learning applications involve selecting subsets of data. Examples include selecting smaller subsets from a much larger dataset to label (to save labeling costs) and to train (to reduce computational costs), or selecting a summary of a video or a photo collection to ease viewing by a person. Submodularity is a natural way to address these problems because it naturally models many aspects like diversity, representation, and coverage. In this project, the PIs will study a rich class of submodular information measures that model not only diversity, representation, coverage but also constructs such as relevance and irrelevance to certain target concepts. One application of this is selecting a data summary with certain user specifications -- e.g., a summary relevant to a given query or under a privacy constraint (a photo summary relevant to a specific person or one which avoids certain personal information). Another application is to interactively select data samples to label in the presence of rare classes or while avoiding outliers (e.g., cancerous images as rare classes for medical imaging tasks). Advances in this field can have implications in many areas including data summarization, reducing labeling efforts (in tasks like medical imaging), and reducing the carbon footprint for training deep learning models on massive datasets.The underlying mathematical model proposed in this project is a rich class of functions called ``submodular information measures``, which includes submodular mutual information, submodular conditional gain, submodular multi-set mutual information, directed submodular mutual information, and combinatorial independence. Specifically, the PIs will investigate and develop: (1) rich theoretical properties and instantiations of these submodular information measures; (2) optimization algorithms, approximation bounds, and hardness results of the associated optimization problems; (3) applications of the submodular information measures in data summarization, data subset selection, active learning, clustering, and diversified partitioning. While pursuing these activities, the PIs will involve undergraduate and under-represented high-school students in this research to inspire them to pursue careers in AI/ML and other STEM-related fields.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
越来越多的机器学习应用涉及选择数据子集。例子包括从一个大得多的数据集中选择较小的子集来标记(以节省标记成本)和训练(以减少计算成本),或者选择视频或照片集合的摘要以方便人们查看。子模块化是解决这些问题的自然方法,因为它自然地对多样性、表示和覆盖等许多方面进行建模。在这个项目中,pi将研究一类丰富的子模块信息度量,这些信息度量不仅对多样性、代表性、覆盖范围进行建模,而且还对某些目标概念的相关性和不相关性等结构进行建模。其中一个应用是选择具有特定用户规范的数据摘要——例如,与给定查询相关的摘要或在隐私约束下的摘要(与特定人员相关的照片摘要或避免某些个人信息的摘要)。另一个应用是交互式地选择数据样本,以便在存在罕见类别或避免异常值的情况下进行标记(例如,将癌症图像作为医学成像任务的罕见类别)。这一领域的进步可以在许多领域产生影响,包括数据总结、减少标记工作(在医学成像等任务中),以及减少在大规模数据集上训练深度学习模型的碳足迹。本项目提出的基础数学模型是一类称为“子模信息测度”的丰富函数,其中包括子模互信息、子模条件增益、子模多集互信息、有向子模互信息和组合独立性。具体而言,pi将调查和开发:(1)这些子模块信息度量的丰富理论属性和实例;(2)相关优化问题的优化算法、近似界和硬度结果;(3)子模块信息测度在数据汇总、数据子集选择、主动学习、聚类和多样化划分等方面的应用。在开展这些活动的同时,pi将让本科生和代表性不足的高中生参与这项研究,以激励他们在人工智能/机器学习和其他stem相关领域从事职业。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
SIMILAR: Submodular Information Measures Based Active Learning In Realistic Scenarios
  • DOI:
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Kothawade;Nathan Beck;Krishnateja Killamsetty;Rishabh K. Iyer
  • 通讯作者:
    S. Kothawade;Nathan Beck;Krishnateja Killamsetty;Rishabh K. Iyer
PRISM: A Rich Class of Parameterized Submodular Information Measures for Guided Data Subset Selection
  • DOI:
    10.1609/aaai.v36i9.21264
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Suraj Kothawade;Vishal Kaushal;Ganesh Ramakrishnan;J. Bilmes;Rishabh K. Iyer
  • 通讯作者:
    Suraj Kothawade;Vishal Kaushal;Ganesh Ramakrishnan;J. Bilmes;Rishabh K. Iyer
PLATINUM: Semi-Supervised Model Agnostic Meta-Learning using Submodular Mutual Information
  • DOI:
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Changbin Li;S. Kothawade;F. Chen;Rishabh K. Iyer
  • 通讯作者:
    Changbin Li;S. Kothawade;F. Chen;Rishabh K. Iyer
Generalized Submodular Information Measures: Theoretical Properties, Examples, Optimization Algorithms, and Applications
  • DOI:
    10.1109/tit.2021.3123944
  • 发表时间:
    2022-02-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Iyer, Rishabh;Khargonkar, Ninad;Asnani, Himanshu
  • 通讯作者:
    Asnani, Himanshu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rishabh Iyer其他文献

SMILe: Leveraging Submodular Mutual Information For Robust Few-Shot Object Detection
SMILe:利用子模互信息进行鲁棒的少样本目标检测
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anay Majee;Ryan Sharp;Rishabh Iyer
  • 通讯作者:
    Rishabh Iyer
Theoretical Analysis of Submodular Information Measures for Targeted Data Subset Selection
目标数据子集选择的子模信息度量的理论分析
  • DOI:
    10.48550/arxiv.2402.13454
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nathan Beck;Truong Pham;Rishabh Iyer
  • 通讯作者:
    Rishabh Iyer

Rishabh Iyer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312841
  • 财政年份:
    2023
  • 资助金额:
    $ 59.96万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312842
  • 财政年份:
    2023
  • 资助金额:
    $ 59.96万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Foundations of Few-Round Active Learning
协作研究:RI:小型:少轮主动学习的基础
  • 批准号:
    2313131
  • 财政年份:
    2023
  • 资助金额:
    $ 59.96万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313151
  • 财政年份:
    2023
  • 资助金额:
    $ 59.96万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
  • 批准号:
    2232298
  • 财政年份:
    2023
  • 资助金额:
    $ 59.96万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312840
  • 财政年份:
    2023
  • 资助金额:
    $ 59.96万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Deep Constrained Learning for Power Systems
合作研究:RI:小型:电力系统的深度约束学习
  • 批准号:
    2345528
  • 财政年份:
    2023
  • 资助金额:
    $ 59.96万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
  • 批准号:
    2312374
  • 财政年份:
    2023
  • 资助金额:
    $ 59.96万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
  • 批准号:
    2312373
  • 财政年份:
    2023
  • 资助金额:
    $ 59.96万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
  • 批准号:
    2232055
  • 财政年份:
    2023
  • 资助金额:
    $ 59.96万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了