Collaborative Research: CNS Core: Medium: Data Augmentation and Adaptive Learning for Next Generation Wireless Spectrum Systems
合作研究:CNS 核心:媒介:下一代无线频谱系统的数据增强和自适应学习
基本信息
- 批准号:2107014
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Deep learning has shown great promise in solving many open challenges in wireless networking research and applications. Deep learning is data hungry, and one of the critical obstacles towards fulfilling its promise is facilitating the acquisition of sufficient amounts of data to train and validate deep learning models. The primary goal of this project is to devise innovative approaches that enable wireless researchers and practitioners to acquire data more efficiently at reduced cost and to utilize existing data more effectively. Findings from this project are expected to fuel future breakthroughs in wireless research by making deep learning models more widely applicable. By integrating research and education, the proposed work will provide excellent hands-on exercises, research, and educational opportunities for undergraduate and graduate students at the three collaborating universities. The project will leverage the existing diversity-related outreach programs at the three institutions to broaden participation from under-represented groups. A team of four investigators with complementary expertise from Auburn University, Temple University, and California State University, Sacramento will carry out a coherent research agenda consisting of the following four thrusts: (1) Spectrum data synthesis and augmentation aided by generative adversarial networks; (2) Exploiting historical and synthetic wireless networking data through novel transfer learning algorithms; (3) Characterizing the relationship between dataset size and performance; (4) Integrate, validate and apply approaches developed in the first three thrusts on spectrum database construction, RF spectrum anomaly detection, and transmitter classification. Thrusts 1-3 are application-agnostic and focused on studying fundamental concepts and techniques that facilitate the acquisition of sufficient amounts of wireless data, enable more effective utilization of existing data, and enable the prediction of how much data is needed to meet desired performance. Thrust 4 is application-specific and focused on specific wireless applications where deep learning has been applied and demonstrated great potential. The data, software and education materials developed from this project will be widely disseminated. The project will engage industry stakeholders on project-related issues, with the aim to disseminate ideas and learn relevant challenges faced by the industry when applying deep learning to wireless applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度学习在解决无线网络研究和应用中的许多开放挑战方面显示出巨大的前景。深度学习需要数据,而实现其承诺的关键障碍之一是促进获取足够数量的数据来训练和验证深度学习模型。该项目的主要目标是设计创新的方法,使无线研究人员和从业者能够以更低的成本更有效地获取数据,并更有效地利用现有数据。该项目的发现有望通过使深度学习模型更广泛地适用来推动未来无线研究的突破。通过整合研究和教育,拟议的工作将为三所合作大学的本科生和研究生提供极好的动手练习、研究和教育机会。该项目将利用这三个机构现有的与多样性有关的外联方案,扩大代表性不足群体的参与。来自奥本大学、坦普尔大学和加州州立大学的四名研究人员组成的团队将开展一项连贯的研究议程,其中包括以下四项内容:(1)在生成性对抗网络的帮助下进行频谱数据合成和增强;(2)通过新颖的转移学习算法利用历史和合成的无线网络数据;(3)表征数据集大小和性能之间的关系;(4)整合、验证和应用前三项任务中开发的关于频谱数据库建设、射频频谱异常检测和发射机分类的方法。步骤1-3与应用无关,专注于研究基本概念和技术,这些概念和技术有助于获取足够量的无线数据,能够更有效地利用现有数据,并能够预测需要多少数据才能满足期望的性能。Struts 4是特定于应用的,专注于特定的无线应用,在这些应用中,深度学习已经被应用并展示了巨大的潜力。由该项目开发的数据、软件和教育材料将得到广泛传播。该项目将在与项目相关的问题上吸引行业利益相关者,目的是传播想法并了解行业在将深度学习应用于无线应用时面临的相关挑战。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Slobodan Vucetic其他文献
Collaborative Job Seeking for People with Autism: Challenges and Design Opportunities
自闭症患者的协作求职:挑战和设计机会
- DOI:
10.1145/3613904.3642197 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Zinat Ara;Amrita Ganguly;Donna Peppard;Dongjun Chung;Slobodan Vucetic;Vivian Genaro Motti;Sungsoo Ray Hong - 通讯作者:
Sungsoo Ray Hong
Two-Pronged Human Evaluation of ChatGPT Self-Correction in Radiology Report Simplification
ChatGPT 自校正在放射学报告简化中的两方面人类评估
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ziyu Yang;Santhosh Cherian;Slobodan Vucetic - 通讯作者:
Slobodan Vucetic
Evolutionary sparse learning reveals the shared genetic basis of convergent traits
进化稀疏学习揭示了趋同性状的共同遗传基础
- DOI:
10.1038/s41467-025-58428-8 - 发表时间:
2025-04-04 - 期刊:
- 影响因子:15.700
- 作者:
John B. Allard;Sudip Sharma;Ravi Patel;Maxwell Sanderford;Koichiro Tamura;Slobodan Vucetic;Glenn S. Gerhard;Sudhir Kumar - 通讯作者:
Sudhir Kumar
Slobodan Vucetic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Slobodan Vucetic', 18)}}的其他基金
FW-HTF-RL: Personalized Virtual Job Assistants to Prepare Individuals with Neurodevelopmental Disabilities for Entry Level IT Jobs
FW-HTF-RL:个性化虚拟工作助理,帮助患有神经发育障碍的个人做好入门级 IT 工作的准备
- 批准号:
2026513 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
III: Small: A Discriminative Modeling Framework for Mining of Spatio-Temporal Data in Remote Sensing
III:Small:遥感时空数据挖掘的判别建模框架
- 批准号:
1117433 - 财政年份:2011
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CAREER: Memory-Constrained Predictive Data Mining
职业:内存受限的预测数据挖掘
- 批准号:
0546155 - 财政年份:2006
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2230945 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
- 批准号:
2406598 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
- 批准号:
2418188 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
- 批准号:
2345339 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
- 批准号:
2225578 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
- 批准号:
2242503 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
- 批准号:
2343959 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
- 批准号:
2343863 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2341378 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Innovating Volumetric Video Streaming with Motion Forecasting, Intelligent Upsampling, and QoE Modeling
合作研究:CNS 核心:中:通过运动预测、智能上采样和 QoE 建模创新体积视频流
- 批准号:
2409008 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant