CAREER: Memory-Constrained Predictive Data Mining
职业:内存受限的预测数据挖掘
基本信息
- 批准号:0546155
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-02-15 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the environment where new large-scale problems are emerging in various disciplines and pervasive computing applications are becoming more common, there is an urgent need for techniques that provide efficient and accurate knowledge discovery by limited-capacity computing devices. The objective of this project is to address this need by developing memory-constrained predictive data mining algorithms that operate when data size exceeds the available memory capacity. The approach is based on the integration of data mining and data compression techniques to optimally utilize the memory for data and model storage, learning, and ancillary operations. The methodology will be thoroughly evaluated on a range of real-life problems that includes learning from large sorted databases, biased data and nonstationary data. Various memory constraints will be considered pertaining to devices ranging from powerful workstations to handheld computers and cell phones to small, inexpensive sensors. This research will reveal the memory lower bounds for accurate learning from different types of data and by different types of learning algorithms. The educational component of the project seeks to integrate research into computer science instruction by designing exciting courses, exploring effective teaching techniques, introducing research to undergraduate and graduate students, and involving underrepresented student groups in research. Broader impacts of the project will be in extending the frontiers of computer and information science and in facilitating knowledge discovery in various scientific, engineering, and business disciplines. Teaching materials and research results, including developed software and databases, will be widely disseminated via Internet (http://www.ist.temple.edu/~vucetic/CAREER.htm) to promote learning and enhance scientific understanding.
在新的大规模的问题正在出现在各个学科和普适计算应用变得越来越普遍的环境中,迫切需要的技术,提供有效的和准确的知识发现的有限容量的计算设备。这个项目的目标是通过开发内存受限的预测数据挖掘算法,当数据大小超过可用的内存容量时,可以满足这一需求。该方法基于数据挖掘和数据压缩技术的集成,以最佳地利用存储器进行数据和模型存储、学习和辅助操作。该方法将在一系列现实问题上进行彻底评估,包括从大型排序数据库,有偏见的数据和非平稳数据中学习。各种内存限制将被认为是属于从强大的工作站,手持计算机和手机的小型,廉价的传感器的设备。这项研究将揭示不同类型的数据和不同类型的学习算法的准确学习的记忆下限。该项目的教育部分旨在通过设计令人兴奋的课程,探索有效的教学技术,向本科生和研究生介绍研究,并让代表性不足的学生群体参与研究,将研究融入计算机科学教学。该项目的更广泛影响将是扩大计算机和信息科学的前沿,促进各种科学,工程和商业学科的知识发现。将通过因特网(http://www.ist.temple.edu/carevucetic/CAREER.htm)广泛传播教材和研究成果,包括开发的软件和数据库,以促进学习和提高科学认识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Slobodan Vucetic其他文献
Collaborative Job Seeking for People with Autism: Challenges and Design Opportunities
自闭症患者的协作求职:挑战和设计机会
- DOI:
10.1145/3613904.3642197 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Zinat Ara;Amrita Ganguly;Donna Peppard;Dongjun Chung;Slobodan Vucetic;Vivian Genaro Motti;Sungsoo Ray Hong - 通讯作者:
Sungsoo Ray Hong
Two-Pronged Human Evaluation of ChatGPT Self-Correction in Radiology Report Simplification
ChatGPT 自校正在放射学报告简化中的两方面人类评估
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ziyu Yang;Santhosh Cherian;Slobodan Vucetic - 通讯作者:
Slobodan Vucetic
Evolutionary sparse learning reveals the shared genetic basis of convergent traits
进化稀疏学习揭示了趋同性状的共同遗传基础
- DOI:
10.1038/s41467-025-58428-8 - 发表时间:
2025-04-04 - 期刊:
- 影响因子:15.700
- 作者:
John B. Allard;Sudip Sharma;Ravi Patel;Maxwell Sanderford;Koichiro Tamura;Slobodan Vucetic;Glenn S. Gerhard;Sudhir Kumar - 通讯作者:
Sudhir Kumar
Slobodan Vucetic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Slobodan Vucetic', 18)}}的其他基金
Collaborative Research: CNS Core: Medium: Data Augmentation and Adaptive Learning for Next Generation Wireless Spectrum Systems
合作研究:CNS 核心:媒介:下一代无线频谱系统的数据增强和自适应学习
- 批准号:
2107014 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
FW-HTF-RL: Personalized Virtual Job Assistants to Prepare Individuals with Neurodevelopmental Disabilities for Entry Level IT Jobs
FW-HTF-RL:个性化虚拟工作助理,帮助患有神经发育障碍的个人做好入门级 IT 工作的准备
- 批准号:
2026513 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
III: Small: A Discriminative Modeling Framework for Mining of Spatio-Temporal Data in Remote Sensing
III:Small:遥感时空数据挖掘的判别建模框架
- 批准号:
1117433 - 财政年份:2011
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
相似国自然基金
CREB在杏仁核神经环路memory allocation中的作用和机制研究
- 批准号:31171079
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
面向多核处理器的硬软件协作Transactional Memory系统结构
- 批准号:60873053
- 批准年份:2008
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Memory Constrained Dynamic Sprite Animation Scaling
内存受限的动态精灵动画缩放
- 批准号:
528331-2018 - 财政年份:2018
- 资助金额:
$ 45万 - 项目类别:
Experience Awards (previously Industrial Undergraduate Student Research Awards)
A Neural Network Model of Novelty Detection in Spatial Memory Systems with Data-Constrained Electrosensory Input
具有数据约束电传感输入的空间记忆系统中新颖性检测的神经网络模型
- 批准号:
442736-2013 - 财政年份:2015
- 资助金额:
$ 45万 - 项目类别:
Postgraduate Scholarships - Doctoral
A Neural Network Model of Novelty Detection in Spatial Memory Systems with Data-Constrained Electrosensory Input
具有数据约束电传感输入的空间记忆系统中新颖性检测的神经网络模型
- 批准号:
442736-2013 - 财政年份:2014
- 资助金额:
$ 45万 - 项目类别:
Postgraduate Scholarships - Doctoral
A Neural Network Model of Novelty Detection in Spatial Memory Systems with Data-Constrained Electrosensory Input
具有数据约束电传感输入的空间记忆系统中新颖性检测的神经网络模型
- 批准号:
442736-2013 - 财政年份:2013
- 资助金额:
$ 45万 - 项目类别:
Postgraduate Scholarships - Doctoral
Development of Algorithmic Paradigms on Memory-Constrained Computation
内存受限计算的算法范式的发展
- 批准号:
23300001 - 财政年份:2011
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Configurable and Composable Systems Mechanisms Supporting Multi-Property Quality of Service for Memory and Power Constrained Embedded Systems
支持内存和功率受限嵌入式系统多属性服务质量的可配置和可组合系统机制
- 批准号:
0209211 - 财政年份:2002
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Integrating time-constrained memory and memory-based reasoning
整合时间受限记忆和基于记忆的推理
- 批准号:
121503-1992 - 财政年份:1994
- 资助金额:
$ 45万 - 项目类别:
Discovery Grants Program - Individual
Integrating time-constrained memory and memory-based reasoning
整合时间受限记忆和基于记忆的推理
- 批准号:
121503-1992 - 财政年份:1993
- 资助金额:
$ 45万 - 项目类别:
Discovery Grants Program - Individual
Integrating time-constrained memory and memory-based reasoning
整合时间受限记忆和基于记忆的推理
- 批准号:
121503-1992 - 财政年份:1992
- 资助金额:
$ 45万 - 项目类别:
Discovery Grants Program - Individual
Memory-Constrained Signal Detection Systems
内存受限的信号检测系统
- 批准号:
7916453 - 财政年份:1980
- 资助金额:
$ 45万 - 项目类别:
Standard Grant