Collaborative Research: OAC Core: Advancing Low-Power Computer Vision at the Edge
合作研究:OAC Core:推进边缘低功耗计算机视觉
基本信息
- 批准号:2107020
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal enables low-power edge computers, such as mobile phones, drones, and Internet-of-Things devices, to benefit society. Computer vision is the technology to automatically analyze images and videos. Computer vision on these devices can keep humans safe, for example by spotting dangers in a factory or at a construction site. This project addresses two challenges that hamper practical adoption of computer vision on edge devices. The first challenge is that current computer vision approaches require powerful computers, but these computers are too far away and have long response time. This project brings the computers to the places where data is acquired. The project makes computer vision more efficient, so that visual data can be analyzed by small edge devices like phones and drones. The second challenge is that building complex software for computer vision is difficult. This project provides software engineering support for emerging computer vision technologies. As a result of addressing these two challenges, computer vision on the edge can become feasible.Bringing computer vision (CV) to devices on the network edge is an essential component of realizing NSF's goal of distributed cyberinfrastructure. This project makes CV on the edge feasible and enables scientific and engineering innovation through improved response time, reduced need for network coverage, and decreased storage costs. This project solves two critical challenges that hinder the transition of edge-based CV into practice. (1) This project makes CV more efficient and edge-friendly. Current CV techniques (e.g., deep neural networks) assume server-class resources (such as graphics processing units, gigabytes of memory); these resources are not available at the edge. This project reduces the resource requirements needed for CV. The methods consider alternative neural network architectures and eliminate redundancies while processing visual data. This project also develops CV-specific distribution techniques to enable edge devices to collaborate on large vision tasks. (2) This project provides software engineering support for CV technologies. Solving real-world CV problems requires engineering new CV applications, often by re-implementing research model architectures as components in new designs. This project develops a library of exemplary CV model implementations for low-power platforms. These exemplars can be used as high-quality components in new CV applications. The project identifies factors that promote and inhibit the reproducibility of CV models. This project also identifies engineering best practices by surveying and interviewing experts in low-power CV and by studying their errors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这一提议使手机、无人机和物联网设备等低功耗边缘计算机能够造福社会。计算机视觉是自动分析图像和视频的技术。这些设备上的计算机视觉可以保护人类的安全,例如通过在工厂或建筑工地发现危险。该项目解决了阻碍计算机视觉在边缘设备上实际采用的两个挑战。第一个挑战是,目前的计算机视觉方法需要功能强大的计算机,但这些计算机距离太远,响应时间长。该项目将计算机带到获取数据的地方。该项目提高了计算机视觉的效率,因此可以通过手机和无人机等小型边缘设备来分析视觉数据。第二个挑战是,为计算机视觉构建复杂的软件是困难的。该项目为新兴的计算机视觉技术提供软件工程支持。由于解决了这两个挑战,边缘的计算机视觉成为可能。将计算机视觉(CV)带到网络边缘的设备是实现NSF分布式网络基础设施目标的重要组成部分。该项目通过缩短响应时间、减少对网络覆盖的需求以及降低存储成本,使边缘CV变得可行,并支持科学和工程创新。该项目解决了阻碍基于边缘的简历向实践过渡的两个关键挑战。(1)此项目使CV更加高效和边缘友好。当前的CV技术(例如,深度神经网络)假定服务器级的资源(例如图形处理单元、千兆字节的存储器);这些资源在边缘不可用。该项目减少了简历所需的资源需求。该方法考虑了其他神经网络结构,并在处理视觉数据时消除了冗余。该项目还开发了特定于CV的分发技术,以使边缘设备能够在大型视觉任务中进行协作。(2)本项目为CV技术提供软件工程支持。解决现实世界的简历问题需要设计新的简历应用程序,通常是通过在新设计中重新实现研究模型架构作为组件来实现的。该项目为低功耗平台开发了一个模范CV模型实施库。这些样本可以用作新简历应用中的高质量组件。该项目确定了促进和抑制CV模型重现性的因素。该项目还通过调查和采访低功率简历中的专家并研究他们的错误来确定工程最佳实践。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Establishing Trust in Vehicle-to-Vehicle Coordination: A Sensor Fusion Approach
建立车辆间协调的信任:传感器融合方法
- DOI:10.1109/di-cps56137.2022.00008
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Veselsky, Jakob;West, Jack;Ahlgren, Isaac;Thiruvathukal, George K.;Klingensmith, Neil;Goel, Abhinav;Jiang, Wenxin;Davis, James C.;Lee, Kyuin;Kim, Younghyun
- 通讯作者:Kim, Younghyun
Are You Really Muted?: A Privacy Analysis of Mute Buttons in Video Conferencing Apps
- DOI:10.48550/arxiv.2204.06128
- 发表时间:2022-04
- 期刊:
- 影响因子:0
- 作者:Yucheng Yang;Jack West;G. Thiruvathukal;Neil Klingensmith;Kassem Fawaz
- 通讯作者:Yucheng Yang;Jack West;G. Thiruvathukal;Neil Klingensmith;Kassem Fawaz
Snapshot Metrics Are Not Enough: Analyzing Software Repositories with Longitudinal Metrics
快照指标还不够:使用纵向指标分析软件存储库
- DOI:10.1145/3551349.3559517
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Synovic, Nicholas M.;Hyatt, Matt;Sethi, Rohan;Thota, Sohini;Shilpika;Miller, Allan J.;Jiang, Wenxin;Amobi, Emmanuel S.;Pinderski, Austin;Läufer, Konstantin
- 通讯作者:Läufer, Konstantin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
George Thiruvathukal其他文献
George Thiruvathukal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('George Thiruvathukal', 18)}}的其他基金
CDSE: Collaborative: Cyber Infrastructure to Enable Computer Vision Applications at the Edge Using Automated Contextual Analysis
CDSE:协作:使用自动上下文分析在边缘启用计算机视觉应用的网络基础设施
- 批准号:
2104319 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Making Software Engineering Work for Computational Science and Engineering: An Integrated Approach
EAGER:协作研究:使软件工程为计算科学与工程服务:一种综合方法
- 批准号:
1445347 - 财政年份:2014
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: BPC-LSA: ACM SIGBP: Forming an ACM Special Interest Group to Scale the Impact of BPC Activities
协作研究:BPC-LSA:ACM SIGBP:组建 ACM 特别兴趣小组以扩大 BPC 活动的影响
- 批准号:
1042337 - 财政年份:2010
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Proposal: Ultra-scalable system software and tools for data-intensive computing
协作提案:用于数据密集型计算的超可扩展系统软件和工具
- 批准号:
0444197 - 财政年份:2004
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
ITR: The Community Information Technology Entrepreneurship Project
ITR:社区信息技术创业项目
- 批准号:
0205652 - 财政年份:2002
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403312 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
- 批准号:
2414474 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
- 批准号:
2414185 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Learning AI Surrogate of Large-Scale Spatiotemporal Simulations for Coastal Circulation
合作研究:OAC Core:学习沿海环流大规模时空模拟的人工智能替代品
- 批准号:
2402947 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403313 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Learning AI Surrogate of Large-Scale Spatiotemporal Simulations for Coastal Circulation
合作研究:OAC Core:学习沿海环流大规模时空模拟的人工智能替代品
- 批准号:
2402946 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: CropDL - Scheduling and Checkpoint/Restart Support for Deep Learning Applications on HPC Clusters
合作研究:OAC 核心:CropDL - HPC 集群上深度学习应用的调度和检查点/重启支持
- 批准号:
2403088 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: CropDL - Scheduling and Checkpoint/Restart Support for Deep Learning Applications on HPC Clusters
合作研究:OAC 核心:CropDL - HPC 集群上深度学习应用的调度和检查点/重启支持
- 批准号:
2403090 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: OAC: Core: Harvesting Idle Resources Safely and Timely for Large-scale AI Applications in High-Performance Computing Systems
合作研究:OAC:核心:安全及时地收集闲置资源,用于高性能计算系统中的大规模人工智能应用
- 批准号:
2403399 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: CropDL - Scheduling and Checkpoint/Restart Support for Deep Learning Applications on HPC Clusters
合作研究:OAC 核心:CropDL - HPC 集群上深度学习应用的调度和检查点/重启支持
- 批准号:
2403089 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant














{{item.name}}会员




