III: Medium: Collaborative Research: Collaborative Machine-Learning-Centric Data Analytics at Scale

III:媒介:协作研究:以机器学习为中心的大规模协作数据分析

基本信息

  • 批准号:
    2107150
  • 负责人:
  • 金额:
    $ 74.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

In recent years our society has enjoyed the huge value of online collaboration and sharing, as evidenced by popular cloud-based services such as Google Docs, Dropbox, GitHub, and Overleaf. These benefits become even more attractive due to the new norm of working remotely caused by the unprecedented Covid-19 pandemic. In this award the investigators want to answer the following question: is it possible to develop online systems to support cloud-based services for collaborative data analytics? This computing paradigm allows collaborators to jointly conduct an analysis job on a large amount of data. The investigator team is particularly interested in scenarios where collaborators are from multiple disciplines with different backgrounds, and the analytics is machine learning centric, since such tasks are becoming increasingly common and important. While collaborators in data analytics want to focus on their research topics and fully utilize their expertise and skills, they are also facing challenges due to their complementary backgrounds and asynchronous working schedules. As a consequence, the collaboration has both inter-disciplinary obstacles and intra-disciplinary obstacles. The goal of this award is to study these challenges and develop new techniques to support such novel online services to support collaborative data analytics. The investigator team identifies four unique research topics: 1) Allowing collaborators to debug the training process of a machine learning model by pausing and resuming the process or setting conditional breakpoints, as these tasks tend to be computationally intensive; 2) Enabling collaborative debugging of external user-defined functions in order to not only harness the popular data science libraries in Python and R, but also achieve a high performance using a parallel data-processing engine often written in other languages such as Java and Scala; 3) Supporting collaborative instance labeling and machine learning training and deployment between domain scientists and machine learning experts; and 4) Analyzing and mining the collected data workflows from collaborators to improve the user productivity to formulate new data analytics tasks. The developed techniques will bring the success of many cloud-based collaboration services to the increasingly important space of scalable data analytics using machine learning techniques. The solutions will significantly lower the barriers to entry in terms of enabling domain-specific analysts -- as opposed to computer-science-trained Big Data experts -- to gather and to efficiently, effectively, and interactively analyze large quantities of data in different domains.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近年来,我们的社会已经享受到了在线协作和共享的巨大价值,正如流行的基于云的服务所证明的那样,如Google Chrome,Dropbox,GitHub和Overleaf。由于前所未有的新型冠状病毒肺炎(COVID-19,即2019冠状病毒病)大流行导致远程工作的新常态,这些福利变得更具吸引力。在这个奖项中,研究人员希望回答以下问题:是否有可能开发在线系统来支持基于云的协作数据分析服务?这种计算范式允许协作者联合对大量数据进行分析工作。 研究人员团队特别感兴趣的场景是,合作者来自不同背景的多个学科,并且分析是以机器学习为中心的,因为这些任务变得越来越普遍和重要。虽然数据分析的合作者希望专注于他们的研究主题并充分利用他们的专业知识和技能,但由于他们的互补背景和异步工作时间表,他们也面临着挑战。 因此,这种合作既有学科间的障碍,也有学科内的障碍。该奖项的目标是研究这些挑战,并开发新技术来支持这种新颖的在线服务,以支持协作数据分析。 研究人员团队确定了四个独特的研究课题:1)允许合作者通过暂停和恢复过程或设置条件断点来调试机器学习模型的训练过程,因为这些任务往往是计算密集型的; 2)支持外部用户定义函数的协作调试,不仅可以利用Python和R中流行的数据科学库,而且还可以使用通常用其他语言(如Java和Scala)编写的并行数据处理引擎来实现高性能; 3)支持领域科学家和机器学习专家之间的协作实例标记和机器学习训练和部署;以及4)分析和挖掘从协作者收集的数据工作流,以提高用户的生产力,从而制定新的数据分析任务。开发的技术将为许多基于云的协作服务带来成功,以利用机器学习技术进行日益重要的可扩展数据分析。这些解决方案将大大降低进入门槛,使特定领域的分析师-而不是计算机科学培训的大数据专家-能够收集并高效,有效,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查进行评估,被认为值得支持的搜索.

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Public Opinions toward COVID-19 Vaccine Mandates: A Machine Learning-based Analysis of U.S. Tweets
公众对 COVID-19 疫苗授权的看法:基于机器学习的美国推文分析
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yawen Guo, Jun Zhu
  • 通讯作者:
    Yawen Guo, Jun Zhu
Demonstration of collaborative and interactive workflow-based data analytics in texera
在 texera 中演示基于协作和交互式工作流程的数据分析
  • DOI:
    10.14778/3554821.3554888
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Liu, Xiaozhen;Wang, Zuozhi;Ni, Shengquan;Alsudais, Sadeem;Huang, Yicong;Kumar, Avinash;Li, Chen
  • 通讯作者:
    Li, Chen
Raven: Accelerating Execution of Iterative Data Analytics by Reusing Results of Previous Equivalent Versions
Raven:通过重用先前等效版本的结果来加速迭代数据分析的执行
  • DOI:
    10.1145/3597465.3605219
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alsudais, Sadeem;Kumar, Avinash;Li, Chen
  • 通讯作者:
    Li, Chen
Drove: Tracking Execution Results of Workflows on Large Datasets
Drive:跟踪大型数据集上工作流程的执行结果
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sadeem Alsudais
  • 通讯作者:
    Sadeem Alsudais
Optimizing Machine Learning Inference Queries with Correlative Proxy Models
  • DOI:
    10.14778/3547305.3547310
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhihui Yang;Zuozhi Wang;Yicong Huang;Yao Lu;Chen Li-;X. S. Wang
  • 通讯作者:
    Zhihui Yang;Zuozhi Wang;Yicong Huang;Yao Lu;Chen Li-;X. S. Wang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chen Li其他文献

Robustness to Noisy Synaptic Weights in Spiking Neural Networks
尖峰神经网络中噪声突触权重的鲁棒性
Towards Biologically-Plausible Neuron Models and Firing Rates in High-Performance Deep Spiking Neural Networks
高性能深尖峰神经网络中生物学上合理的神经元模型和放电率
Effects of PDCA management mode on rehabilitation of patients with ureteral calculi complicated with urinary tract infection
PDCA管理模式对输尿管结石合并尿路感染患者康复的影响
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chen Li;Yanmei Yuan;Yu;S. Cheng;Hong Zhang;Zengshi Yang;Lizi Wang;Xiaotang Liu
  • 通讯作者:
    Xiaotang Liu
Comparative study on treatment of advanced gastric carcinoma by shenfu injection combined with XELOX Regimen
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chen Li
  • 通讯作者:
    Chen Li
Legged Robots Change Locomotor Modes To Traverse 3-D Obstacles With Varied Stiffness
有腿机器人改变运动模式以穿越不同刚度的 3D 障碍物
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhiyi Ren;Ratan Sadanand Othayoth Mullankandy;Chen Li
  • 通讯作者:
    Chen Li

Chen Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chen Li', 18)}}的其他基金

Travel: Request for Student Travel Support for ICDE 2023
旅行:申请 ICDE 2023 学生旅行支持
  • 批准号:
    2300205
  • 财政年份:
    2023
  • 资助金额:
    $ 74.33万
  • 项目类别:
    Standard Grant
How Orb-Weaver Spiders Use Leg posture to Modulate Vibration Sensing of Prey on Webs
圆织蜘蛛如何利用腿部姿势来调节网上猎物的振动感知
  • 批准号:
    2310707
  • 财政年份:
    2023
  • 资助金额:
    $ 74.33万
  • 项目类别:
    Continuing Grant
Collaborative Research: Frameworks: Simulating Autonomous Agents and the Human-Autonomous Agent Interaction
协作研究:框架:模拟自主代理和人机交互
  • 批准号:
    2209795
  • 财政年份:
    2022
  • 资助金额:
    $ 74.33万
  • 项目类别:
    Standard Grant
ISS: Transient Behavior of Flow Condensation and Its Impacts on Condensation Rate
ISS:流动冷凝的瞬态行为及其对冷凝率的影响
  • 批准号:
    2224438
  • 财政年份:
    2022
  • 资助金额:
    $ 74.33万
  • 项目类别:
    Standard Grant
Scattering Selection Rules of Chiral Phonons and Thermal Transport
手性声子的散射选择规则与热传输
  • 批准号:
    2227947
  • 财政年份:
    2022
  • 资助金额:
    $ 74.33万
  • 项目类别:
    Standard Grant
ISS: Understanding the Gravity Effect on Flow Boiling Through High-Resolution Experiments and Machine Learning
ISS:通过高分辨率实验和机器学习了解重力对流动沸腾的影响
  • 批准号:
    2126437
  • 财政年份:
    2021
  • 资助金额:
    $ 74.33万
  • 项目类别:
    Standard Grant
CAREER: Anisotropic Suppression of Lattice Thermal Conductivity through the Interaction between Phonons and Thermal Magnetic Excitations
职业:通过声子和热磁激发之间的相互作用对晶格热导率进行各向异性抑制
  • 批准号:
    1750786
  • 财政年份:
    2018
  • 资助金额:
    $ 74.33万
  • 项目类别:
    Standard Grant
EAGER: Supporting GUI-Based Text Analytics on Social Media Data by Non-Technical Users
EAGER:支持非技术用户对社交媒体数据进行基于 GUI 的文本分析
  • 批准号:
    1745673
  • 财政年份:
    2017
  • 资助金额:
    $ 74.33万
  • 项目类别:
    Standard Grant
EPRI: On-demand Sweating-Boosted Air Cooled Heat-Pipe Condensers for Green Power Plants
EPRI:用于绿色发电厂的按需发汗增压风冷热管冷凝器
  • 批准号:
    1357920
  • 财政年份:
    2014
  • 资助金额:
    $ 74.33万
  • 项目类别:
    Continuing Grant
Nanotip-Induced Boundary Layers to Enhance Flow Boiling in Microchannels
纳米尖端诱导边界层增强微通道中的流动沸腾
  • 批准号:
    1336443
  • 财政年份:
    2013
  • 资助金额:
    $ 74.33万
  • 项目类别:
    Standard Grant

相似海外基金

III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
  • 批准号:
    2420691
  • 财政年份:
    2024
  • 资助金额:
    $ 74.33万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
  • 批准号:
    2312865
  • 财政年份:
    2023
  • 资助金额:
    $ 74.33万
  • 项目类别:
    Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
  • 批准号:
    2312932
  • 财政年份:
    2023
  • 资助金额:
    $ 74.33万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2415562
  • 财政年份:
    2023
  • 资助金额:
    $ 74.33万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
  • 批准号:
    2348169
  • 财政年份:
    2023
  • 资助金额:
    $ 74.33万
  • 项目类别:
    Continuing Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
  • 批准号:
    2312501
  • 财政年份:
    2023
  • 资助金额:
    $ 74.33万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Knowledge discovery from highly heterogeneous, sparse and private data in biomedical informatics
合作研究:III:中:生物医学信息学中高度异构、稀疏和私有数据的知识发现
  • 批准号:
    2312862
  • 财政年份:
    2023
  • 资助金额:
    $ 74.33万
  • 项目类别:
    Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
  • 批准号:
    2312930
  • 财政年份:
    2023
  • 资助金额:
    $ 74.33万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
  • 批准号:
    2347592
  • 财政年份:
    2023
  • 资助金额:
    $ 74.33万
  • 项目类别:
    Standard Grant
Collaborative Research: IIS: III: MEDIUM: Learning Protein-ish: Foundational Insight on Protein Language Models for Better Understanding, Democratized Access, and Discovery
协作研究:IIS:III:中等:学习蛋白质:对蛋白质语言模型的基础洞察,以更好地理解、民主化访问和发现
  • 批准号:
    2310113
  • 财政年份:
    2023
  • 资助金额:
    $ 74.33万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了