Nanotip-Induced Boundary Layers to Enhance Flow Boiling in Microchannels

纳米尖端诱导边界层增强微通道中的流动沸腾

基本信息

  • 批准号:
    1336443
  • 负责人:
  • 金额:
    $ 30.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-01 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

CBET-1336443LiThrough the latent heat evaporation, flow boiling in microchannels has great potential in achieving high temperature uniformity at a high working heat flux with reduced pumping power, which is critical in cooling high power electronics and photonics and in improving reliability and energy efficiency of micro-heat exchangers and reactors. However, flow boiling in microchannels is stochastic and hampered by several severe constraints such as bubble confinements, viscosity and surface tension force-dominated flows. It is well known that heat and mass transfer are ultimately governed by boundary layers (BLs) during flow boiling in microchannels. It was observed, by disturbing BLs such as creating oscillations, introducing capillary flows along walls, and promoting thin film evaporation, flow boiling in microchannels can be enhanced. However, research to enhance flow boiling by intentionally constructing and optimizing BLs is still lacking. In this study, by directly reconstructing or designing the BLs, the flow boiling in microchannels can be controlled and designed as desired to some extent. This can be achieved by forming innovative hydrophilic nanotip arrays along microchannel walls. After multiple and transitional two-phase regimes are unified by nanotip-induced BLs, in this project, it will be feasible to develop general, physics-based, and robust two-phase models. Equally importantly, the concept developed in this project will be positively utilized to push the limit of flow boiling in microchannels. The specific tasks of this project will be pursued to achieve project goals: construct and optimize BLs by developing hydrophilic nanotip arrays with advanced profiles; achieve an unprecedented flow boiling performance; characterize new flow boiling phenomena with induced BLs in microchannels; and develop understandings of the induced BLs and their critical roles in determining two-phase transport phenomena in nano- and micro-domains.This project will form the basis for a new research discipline in fluid mechanics with induced BLs, enable new research directions in two-phase transport, and provide fundamental insights pertinent to two-phase transport at the nano- and micro-domains. Drastically enhanced flow boiling in microchannels by controlling BLs can update the two-phase cooling technology and scientific discovery in thermal/fluids. Compatibility with microelectronics will lead to embedded cooling solutions for high power electronics and photonics, which is still a challenging task. This project will also aim to educate next generation scientists and engineers in micro/nano-technologies and providing opportunities to undergraduates, in particular underrepresented minorities, to gain first-hand research experience in micro/nanotechnologies and expand their intellectual horizon by bridging the state-of-the-art micro/nanotechnologies and basic science.
通过潜热蒸发,微通道中的流动沸腾在以降低的泵送功率在高工作热通量下实现高温均匀性方面具有巨大的潜力,这在冷却高功率电子器件和光子器件以及提高微型热交换器和反应器的可靠性和能量效率方面至关重要。然而,微通道内的流动沸腾是随机的,并受到几个严重的限制,如气泡约束,粘度和表面张力力占主导地位的流动。微通道内流动沸腾传热传质的最终控制因素是边界层。研究发现,通过扰动边界层,如产生振荡、沿壁面沿着引入毛细流动和促进薄膜蒸发,可以增强微通道内的流动沸腾。然而,通过有意地构建和优化BL来增强流动沸腾的研究仍然缺乏。在本研究中,通过直接改造或设计边界层,可以在一定程度上控制和设计微通道内的流动沸腾。这可以通过沿沿着微通道壁形成创新的亲水性纳米尖端阵列来实现。在多个和过渡两相制度统一的纳米尖诱导的BL,在这个项目中,它将是可行的,开发通用的,基于物理的,和强大的两相模型。同样重要的是,在这个项目中开发的概念将被积极利用,推动微通道中的流动沸腾的极限。该项目的具体任务将致力于实现项目目标:通过开发具有先进轮廓的亲水性纳米尖端阵列来构建和优化BL;实现前所未有的流动沸腾性能;表征微通道中诱导BL的新流动沸腾现象;并发展的诱导BL及其在确定纳米和微米两相传输现象的关键作用的理解,该项目将形成具有诱导BL的流体力学新研究学科的基础,使两相运输的新研究方向成为可能,并提供与纳米和微米领域的两相运输相关的基本见解。通过控制边界层来强化微通道内的流动沸腾,可以促进两相冷却技术的发展和热/流体领域的科学发现。与微电子的兼容性将导致高功率电子和光子学的嵌入式冷却解决方案,这仍然是一项具有挑战性的任务。该项目还旨在教育下一代科学家和工程师掌握微/纳米技术,并为本科生,特别是代表性不足的少数群体提供机会,以获得微/纳米技术的第一手研究经验,并通过连接最先进的微/纳米技术和基础科学来扩大他们的知识视野。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chen Li其他文献

Robustness to Noisy Synaptic Weights in Spiking Neural Networks
尖峰神经网络中噪声突触权重的鲁棒性
Towards Biologically-Plausible Neuron Models and Firing Rates in High-Performance Deep Spiking Neural Networks
高性能深尖峰神经网络中生物学上合理的神经元模型和放电率
Effects of PDCA management mode on rehabilitation of patients with ureteral calculi complicated with urinary tract infection
PDCA管理模式对输尿管结石合并尿路感染患者康复的影响
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chen Li;Yanmei Yuan;Yu;S. Cheng;Hong Zhang;Zengshi Yang;Lizi Wang;Xiaotang Liu
  • 通讯作者:
    Xiaotang Liu
Comparative study on treatment of advanced gastric carcinoma by shenfu injection combined with XELOX Regimen
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chen Li
  • 通讯作者:
    Chen Li
Legged Robots Change Locomotor Modes To Traverse 3-D Obstacles With Varied Stiffness
有腿机器人改变运动模式以穿越不同刚度的 3D 障碍物
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhiyi Ren;Ratan Sadanand Othayoth Mullankandy;Chen Li
  • 通讯作者:
    Chen Li

Chen Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chen Li', 18)}}的其他基金

Travel: Request for Student Travel Support for ICDE 2023
旅行:申请 ICDE 2023 学生旅行支持
  • 批准号:
    2300205
  • 财政年份:
    2023
  • 资助金额:
    $ 30.58万
  • 项目类别:
    Standard Grant
How Orb-Weaver Spiders Use Leg posture to Modulate Vibration Sensing of Prey on Webs
圆织蜘蛛如何利用腿部姿势来调节网上猎物的振动感知
  • 批准号:
    2310707
  • 财政年份:
    2023
  • 资助金额:
    $ 30.58万
  • 项目类别:
    Continuing Grant
Collaborative Research: Frameworks: Simulating Autonomous Agents and the Human-Autonomous Agent Interaction
协作研究:框架:模拟自主代理和人机交互
  • 批准号:
    2209795
  • 财政年份:
    2022
  • 资助金额:
    $ 30.58万
  • 项目类别:
    Standard Grant
ISS: Transient Behavior of Flow Condensation and Its Impacts on Condensation Rate
ISS:流动冷凝的瞬态行为及其对冷凝率的影响
  • 批准号:
    2224438
  • 财政年份:
    2022
  • 资助金额:
    $ 30.58万
  • 项目类别:
    Standard Grant
Scattering Selection Rules of Chiral Phonons and Thermal Transport
手性声子的散射选择规则与热传输
  • 批准号:
    2227947
  • 财政年份:
    2022
  • 资助金额:
    $ 30.58万
  • 项目类别:
    Standard Grant
ISS: Understanding the Gravity Effect on Flow Boiling Through High-Resolution Experiments and Machine Learning
ISS:通过高分辨率实验和机器学习了解重力对流动沸腾的影响
  • 批准号:
    2126437
  • 财政年份:
    2021
  • 资助金额:
    $ 30.58万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Collaborative Machine-Learning-Centric Data Analytics at Scale
III:媒介:协作研究:以机器学习为中心的大规模协作数据分析
  • 批准号:
    2107150
  • 财政年份:
    2021
  • 资助金额:
    $ 30.58万
  • 项目类别:
    Continuing Grant
CAREER: Anisotropic Suppression of Lattice Thermal Conductivity through the Interaction between Phonons and Thermal Magnetic Excitations
职业:通过声子和热磁激发之间的相互作用对晶格热导率进行各向异性抑制
  • 批准号:
    1750786
  • 财政年份:
    2018
  • 资助金额:
    $ 30.58万
  • 项目类别:
    Standard Grant
EAGER: Supporting GUI-Based Text Analytics on Social Media Data by Non-Technical Users
EAGER:支持非技术用户对社交媒体数据进行基于 GUI 的文本分析
  • 批准号:
    1745673
  • 财政年份:
    2017
  • 资助金额:
    $ 30.58万
  • 项目类别:
    Standard Grant
EPRI: On-demand Sweating-Boosted Air Cooled Heat-Pipe Condensers for Green Power Plants
EPRI:用于绿色发电厂的按需发汗增压风冷热管冷凝器
  • 批准号:
    1357920
  • 财政年份:
    2014
  • 资助金额:
    $ 30.58万
  • 项目类别:
    Continuing Grant

相似国自然基金

炎性反应中巨噬细胞激活诱导死亡(activation-induced cell death,AICD)的机理研究
  • 批准号:
    30330260
  • 批准年份:
    2003
  • 资助金额:
    105.0 万元
  • 项目类别:
    重点项目

相似海外基金

Investigation of coastal upwelling induced by western boundary currents
西边界流引起的海岸上升流研究
  • 批准号:
    23H01242
  • 财政年份:
    2023
  • 资助金额:
    $ 30.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Role of Diffusion-Induced Grain Boundary Migration in Alloy Oxidation
扩散引起的晶界迁移在合金氧化中的作用
  • 批准号:
    2236887
  • 财政年份:
    2023
  • 资助金额:
    $ 30.58万
  • 项目类别:
    Standard Grant
Effects of inflow perturbations on the energy transfer and wake vortex dynamics of a 2-DOF cylinder undergoing vortex-induced vibration near a plane boundary in turbulent flows
流入扰动对在湍流中平面边界附近经历涡激振动的 2 自由度圆柱体的能量传递和尾涡动力学的影响
  • 批准号:
    569540-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 30.58万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
CAREER: Characterization and understanding of point defect evolution during corrosion-induced grain boundary migration
职业:腐蚀引起的晶界迁移过程中点缺陷演化的表征和理解
  • 批准号:
    2145455
  • 财政年份:
    2022
  • 资助金额:
    $ 30.58万
  • 项目类别:
    Continuing Grant
Controlling vortex induced vibrations of cylindrical structures placed near a plane boundary
控制平面边界附近圆柱形结构的涡激振动
  • 批准号:
    RGPIN-2016-04079
  • 财政年份:
    2021
  • 资助金额:
    $ 30.58万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Experimental and Numerical Study of Bed Shear Stress and Turbulent Boundary Layer Structure Induced by Breaking-Wave-Generated Vortices
合作研究:破碎波产生涡流引起的床面剪应力和湍流边界层结构的实验和数值研究
  • 批准号:
    2049293
  • 财政年份:
    2021
  • 资助金额:
    $ 30.58万
  • 项目类别:
    Standard Grant
Collaborative Research: Experimental and Numerical Study of Bed Shear Stress and Turbulent Boundary Layer Structure Induced by Breaking-Wave-Generated Vortices
合作研究:破碎波产生涡流引起的床面剪应力和湍流边界层结构的实验和数值研究
  • 批准号:
    2048844
  • 财政年份:
    2021
  • 资助金额:
    $ 30.58万
  • 项目类别:
    Standard Grant
Collaborative Research: Experimental and Numerical Study of Bed Shear Stress and Turbulent Boundary Layer Structure Induced by Breaking-Wave-Generated Vortices
合作研究:破碎波产生涡流引起的床面剪应力和湍流边界层结构的实验和数值研究
  • 批准号:
    2049140
  • 财政年份:
    2021
  • 资助金额:
    $ 30.58万
  • 项目类别:
    Standard Grant
Accurate CFD Modeling of Atmospheric Boundary Layer with an Emphasis on Wind-Induced Response of Buildings
大气边界层的精确 CFD 建模,重点关注建筑物的风致响应
  • 批准号:
    542513-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 30.58万
  • 项目类别:
    Collaborative Research and Development Grants
Controlling vortex induced vibrations of cylindrical structures placed near a plane boundary
控制平面边界附近圆柱形结构的涡激振动
  • 批准号:
    RGPIN-2016-04079
  • 财政年份:
    2020
  • 资助金额:
    $ 30.58万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了