Collaborative Research: HCC: Medium: Intelligent support for non-experts to navigate large information spaces
协作研究:HCC:中:为非专家导航大型信息空间提供智能支持
基本信息
- 批准号:2107334
- 负责人:
- 金额:$ 44.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will build our understanding of how to enable non-expert volunteers in a citizen-science project to contribute to analyses of large volumes of data by searching for potentially causal relations. The increasing use of automated scientific-data-collection instruments has led to an explosion in the amount of scientific data collected, challenging the ability of scientists to analyze them. Volunteers have less background knowledge than experts about the purpose, context, content, provenance and processes associated with the data. A system that provides such background knowledge will enable non-experts to make sense of the data. The research plan also includes building system support to augment the capabilities of the volunteers, for example by searching for related data and by performing causal inference in conjunction with volunteers. Citizen-science projects provide a vehicle to disseminate scientific practice, knowledge and findings to the general public to increase awareness and understanding of the practices and techniques of data-intensive science. Findings should be directly applicable to the target context of involving citizen-science volunteers in navigating and analyzing large quantities of science data and generalize to other settings with big data. In this research, volunteers classify noise events (glitches) produced by the Laser Interferometer Gravitational-wave Observatory (LIGO). Along with glitches observed in the main Gravitational Wave channel, the detectors record around 400,000 auxiliary channels of data that may provide information about the origins of the glitch. The research will test hypotheses about the kind of additional information needed to enable non-experts to productively navigate this large dynamic dataset to find related information and will develop processes, techniques and tools to allow the volunteers to manage and efficiently process the data. It will develop our understanding of how and when to introduce which different types of background knowledge about the data to enable non-experts to work on a task, such as by providing maps and visualizations of particular data and relationships at the time they are most needed in the volunteers' work process. The gravitational physics and astronomy communities will directly benefit from advances in LIGO detector characterization, data quality vetoes and hence signal searches.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目将建立我们的理解,如何使非专家志愿者在公民科学项目,以有助于通过搜索潜在的因果关系,分析大量的数据。自动化科学数据收集工具的使用越来越多,导致收集的科学数据数量激增,对科学家分析这些数据的能力提出了挑战。志愿人员对数据的目的、背景、内容、来源和相关过程的背景知识少于专家。提供这种背景知识的系统将使非专家能够理解数据。研究计划还包括建立系统支持,以增强志愿者的能力,例如通过搜索相关数据和与志愿者一起进行因果推理。公民科学项目为向公众传播科学实践、知识和研究结果提供了一个工具,以提高对数据密集型科学实践和技术的认识和理解。研究结果应直接适用于公民科学志愿者参与导航和分析大量科学数据的目标背景,并推广到其他大数据环境。在这项研究中,志愿者对激光干涉引力波天文台(LIGO)产生的噪声事件(毛刺)进行分类。沿着在主引力波通道中观察到的故障,探测器记录了大约40万个辅助通道的数据,这些数据可能提供有关故障起源的信息。该研究将测试关于使非专家能够有效地浏览这个大型动态数据集以找到相关信息所需的额外信息的假设,并将开发流程,技术和工具,以允许志愿者管理和有效处理数据。它将发展我们对如何以及何时引入关于数据的不同类型的背景知识的理解,以使非专家能够完成任务,例如在志愿者的工作过程中最需要的时候提供特定数据和关系的地图和可视化。引力物理和天文学界将直接受益于LIGO探测器表征、数据质量否决和信号搜索方面的进步。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aggelos Katsaggelos其他文献
AI-Driven Assessment of Aortic Dimensions Based on Contrast-Enhanced MRA of the Thoracic Aorta
基于胸部主动脉对比增强磁共振血管造影的人工智能驱动的主动脉尺寸评估
- DOI:
10.1016/j.jocmr.2024.101478 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:6.100
- 作者:
Charilaos Apostolidis;Haben Berhane;David Dushfunian;Ethan Johnson;Courtney Pfister;Bradley D. Allen;Aggelos Katsaggelos;Michael Markl - 通讯作者:
Michael Markl
BKinD-3D: Self-Supervised 3D Keypoint Discovery from Multi-View Videos
BKinD-3D:从多视图视频中进行自我监督的 3D 关键点发现
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jennifer J. Sun;Pierre Karashchuk;Amil Dravid;Serim Ryou;Sonia Fereidooni;John Tuthill;Aggelos Katsaggelos;Bingni W. Brunton;Georgia Gkioxari;Ann Kennedy - 通讯作者:
Ann Kennedy
Kiosk 7R-FB-10 - Accelerated, FBee-breathing, 3D Cardiac T1ρ Mapping Pulse Sequence with XD-GRASP Reconstruction
信息亭 7R-FB-10 - 加速的、FBee 呼吸、带有 XD-GRASP 重建的 3D 心脏 T1ρ 映射脉冲序列
- DOI:
10.1016/j.jocmr.2024.100813 - 发表时间:
2024-03-01 - 期刊:
- 影响因子:6.100
- 作者:
Suvai Gunasekaran;KyungPyo Hong;Joshua Robinson;Gregory Webster;Rod Passman;Daniel Lee;Aggelos Katsaggelos;Cynthia Rigsby;Walter Witschey;Daniel Kim - 通讯作者:
Daniel Kim
Left atrial fibrosis quantification using an accelerated 3D left atrium late gadolinium enhancement pulse sequence with isotropic spatial resolution: A preliminary evaluation in patients with atrial fIbrillation
使用具有各向同性空间分辨率的加速三维左心房晚期钆增强脉冲序列进行左心房纤维化定量:对心房颤动患者的初步评估
- DOI:
10.1016/j.jocmr.2024.101605 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:6.100
- 作者:
Rupsa Paul;KyungPyo Hong;Cagdas Topel;Mohammed S.M. Elbaz;Eugene Kholmovski;Aggelos Katsaggelos;Rod Passman;Saman Nazarian;Kenneth C. Bilchick;Daniel Kim - 通讯作者:
Daniel Kim
Automated quantification of left ventricular scar volume in cardiac MRI using large vision models
利用大视觉模型对心脏磁共振成像中左心室瘢痕体积的自动量化
- DOI:
10.1016/j.jocmr.2024.101277 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:6.100
- 作者:
Neda Tavakoli;Daniel C Lee;Amir Ali Rahsepar;Brandon Benefield;Daming Shen;Santiago López-Tapia;Florian Schiffers;Edwin Wu;Aggelos Katsaggelos;Daniel Kim - 通讯作者:
Daniel Kim
Aggelos Katsaggelos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aggelos Katsaggelos', 18)}}的其他基金
Database for Image Processing Research
图像处理研究数据库
- 批准号:
9322726 - 财政年份:1994
- 资助金额:
$ 44.54万 - 项目类别:
Standard Grant
Constrained Iterative Image Restoration Algorithms
约束迭代图像恢复算法
- 批准号:
8614217 - 财政年份:1987
- 资助金额:
$ 44.54万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: HCC: Medium: Aligning Robot Representations with Humans
合作研究:HCC:媒介:使机器人表示与人类保持一致
- 批准号:
2310757 - 财政年份:2023
- 资助金额:
$ 44.54万 - 项目类别:
Standard Grant
Collaborative Research: HCC: Small: End-User Guided Search and Optimization for Accessible Product Customization and Design
协作研究:HCC:小型:最终用户引导的搜索和优化,以实现无障碍产品定制和设计
- 批准号:
2327136 - 财政年份:2023
- 资助金额:
$ 44.54万 - 项目类别:
Standard Grant
Collaborative Research: HCC: Small: Bridging Research and Visualization Design Practice via a Sustainable Knowledge Platform
合作研究:HCC:小型:通过可持续知识平台桥接研究和可视化设计实践
- 批准号:
2147044 - 财政年份:2023
- 资助金额:
$ 44.54万 - 项目类别:
Standard Grant
Collaborative Research: HCC: Small: Computational Design and Application of Wearable Haptic Knits
合作研究:HCC:小型:可穿戴触觉针织物的计算设计与应用
- 批准号:
2301355 - 财政年份:2023
- 资助金额:
$ 44.54万 - 项目类别:
Standard Grant
Collaborative Research: NSF-CSIRO: HCC: Small: Understanding Bias in AI Models for the Prediction of Infectious Disease Spread
合作研究:NSF-CSIRO:HCC:小型:了解预测传染病传播的 AI 模型中的偏差
- 批准号:
2302969 - 财政年份:2023
- 资助金额:
$ 44.54万 - 项目类别:
Standard Grant
Collaborative Research: HCC: Small: Understanding Online-to-Offline Sexual Violence through Data Donation from Users
合作研究:HCC:小型:通过用户捐赠的数据了解线上线下性暴力
- 批准号:
2401775 - 财政年份:2023
- 资助金额:
$ 44.54万 - 项目类别:
Standard Grant
Collaborative Research: HCC: Small: Supporting Flexible and Safe Disability Representation in Social Virtual Reality
合作研究:HCC:小型:支持社交虚拟现实中灵活、安全的残疾表征
- 批准号:
2328183 - 财政年份:2023
- 资助金额:
$ 44.54万 - 项目类别:
Standard Grant
Collaborative Research: HCC: Small: RUI: Drawing from Life in Extended Reality: Advancing and Teaching Cross-Reality User Interfaces for Observational 3D Sketching
合作研究:HCC:小型:RUI:从扩展现实中的生活中汲取灵感:推进和教授用于观察 3D 草图绘制的跨现实用户界面
- 批准号:
2326998 - 财政年份:2023
- 资助金额:
$ 44.54万 - 项目类别:
Standard Grant
Collaborative Research: HCC: Medium: "Unboxing" Haptic Texture Perception: Closing the Loop from Skin Contact Mechanics to Novel Haptic Device
合作研究:HCC:媒介:“拆箱”触觉纹理感知:闭合从皮肤接触力学到新型触觉设备的循环
- 批准号:
2312153 - 财政年份:2023
- 资助金额:
$ 44.54万 - 项目类别:
Standard Grant
Collaborative Research: HCC: Small: End-User Guided Search and Optimization for Accessible Product Customization and Design
协作研究:HCC:小型:最终用户引导的搜索和优化,以实现无障碍产品定制和设计
- 批准号:
2327137 - 财政年份:2023
- 资助金额:
$ 44.54万 - 项目类别:
Standard Grant