III: Medium: Collaborative Research: Situated Visual Information Spaces
III:媒介:协作研究:情境视觉信息空间
基本信息
- 批准号:2107328
- 负责人:
- 金额:$ 40.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aim of this project is to enable people to effectively visualize information about the world in augmented reality. Augmented reality is potentially the next big social benefit from computer technologies, because it allows visual information to be embedded - or ‘situated’ - into the real world. This allows people using smartphones and smartglasses to see data around them in the correct real-world context. However, unlike when visualizing data on a regular computer or smartphone display, where a designer has complete control over how the application looks and feels, augmented reality visualizations are inherently overlaid on the real world. As such, visualizations must be capable of reacting to different real-world environments including dynamic scenes, and for there to be design recommendations that say how visualizations should react to different environments. This project will scientifically investigate visualization for augmented reality, study the efficacy of different approaches, create design recommendations, and then build a software system that can apply these recommendations to help design and run effective visualization applications. The proposed approach will be experimentally validated in the sports and healthcare domains.Situated visual information spaces fuse the digital information world with the physical world of objects, people, locations, and environments using augmented reality. To realize this, three scientific and design challenges will be tackled: (1) Situated visualization, interaction, and collaboration, which requires intuitive in-situ data visualizations, physical and digital interfaces for natural user interactions, and schemes for collaboration in augmented reality. Novel situated visual embedding methods will be studied for spatial and non-spatial data in dynamic environmental and situational contexts. These visualizations will automatically adapt to the physical environment, digital entities, users, and tasks while using perceptually and cognitively effective methods that do not overwhelm the user. (2) Design via constraints, where software reduces the increased complexity of creating visualizations that adapt to real-world environments. This software is aimed at visualization designers and evaluates guidelines as constraints, then balances these to provide recommendations for appropriate data and designs for the current environment. (3) Situated applications, where two wellness applications in healthcare and sports will be developed and evaluated in partnership with respective domain experts. Within them, these domains cover a spectrum of different techniques, tasks, and users. These applications will help to define an achievable research scope, drive it with motivated stakeholders, and present best-practices via use cases.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目的是使人们能够在增强现实中有效地可视化关于世界的信息。增强现实可能是计算机技术带来的下一个重大社会效益,因为它允许将视觉信息嵌入--或“定位”--到真实世界中。这使得使用智能手机和智能眼镜的人能够在正确的现实世界环境中查看周围的数据。然而,与在普通电脑或智能手机显示屏上可视化数据时不同,在常规电脑或智能手机显示屏上,设计师可以完全控制应用程序的外观和手感,增强现实可视化本质上是覆盖在现实世界上的。因此,可视化必须能够对包括动态场景在内的不同真实世界环境做出反应,并且要有说明可视化应该如何对不同环境做出反应的设计建议。该项目将科学地研究增强现实的可视化,研究不同方法的有效性,创建设计建议,然后构建一个软件系统,可以应用这些建议来帮助设计和运行有效的可视化应用程序。所提出的方法将在体育和医疗领域进行实验验证。固定的视觉信息空间使用增强现实将数字信息世界与物体、人、位置和环境的物理世界融合在一起。为了实现这一点,将解决三个科学和设计挑战:(1)情景可视化、交互和协作,这需要直观的现场数据可视化,自然用户交互的物理和数字接口,以及增强现实中的协作方案。针对动态环境和情景环境中的空间和非空间数据,将研究新的情境视觉嵌入方法。这些可视化将自动适应物理环境、数字实体、用户和任务,同时使用感知和认知上的有效方法,而不会让用户不知所措。(2)通过约束进行设计,其中软件降低了创建适应真实环境的可视化所增加的复杂性。该软件面向可视化设计人员,将指导方针作为约束条件进行评估,然后对这些约束条件进行权衡,为当前环境下的适当数据和设计提供建议。(3)定位应用程序,其中将与各自的领域专家合作开发和评估医疗保健和体育方面的两个健康应用程序。其中,这些域涵盖了一系列不同的技术、任务和用户。这些应用程序将有助于定义可实现的研究范围,与积极的利益相关者一起推动它,并通过使用案例呈现最佳实践。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Labeling Out-of-View Objects in Immersive Analytics to Support Situated Visual Searching
在沉浸式分析中标记视图外的对象以支持情景视觉搜索
- DOI:10.1109/tvcg.2021.3133511
- 发表时间:2021
- 期刊:
- 影响因子:5.2
- 作者:Lin, T.;Yang, Y.;Beyer, J.;Pfister, H.
- 通讯作者:Pfister, H.
Sporthesia: Augmenting Sports Videos Using Natural Language
- DOI:10.1109/tvcg.2022.3209497
- 发表时间:2022-09
- 期刊:
- 影响因子:5.2
- 作者:Zhutian Chen;Qisen Yang;Xiao Xie;Johanna Beyer;Haijun Xia;Yingnian Wu;H. Pfister
- 通讯作者:Zhutian Chen;Qisen Yang;Xiao Xie;Johanna Beyer;Haijun Xia;Yingnian Wu;H. Pfister
DeepLIIF: Deep Learning-Inferred Multiplex ImmunoFluorescence for IHC Image Quantification
DeepLIIF:用于 IHC 图像量化的深度学习推断多重免疫荧光
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:23.8
- 作者:Ghahremani, P.;Li, Y.;Kaufman, A. E.;Vanguri, R.;Greenwald, N.;Angelo, M.;Hollmann, T. J.;Nadeem, S.
- 通讯作者:Nadeem, S.
VIRD: Immersive Match Video Analysis for High-Performance Badminton Coaching
- DOI:10.1109/tvcg.2023.3327161
- 发表时间:2024-01-01
- 期刊:
- 影响因子:5.2
- 作者:Lin,Tica;Aouididi,Alexandre;Wang,Jui-Hsien
- 通讯作者:Wang,Jui-Hsien
The Ball is in Our Court: Conducting Visualization Research With Sports Experts
球在我们的球场上:与体育专家进行可视化研究
- DOI:10.1109/mcg.2022.3222042
- 发表时间:2023
- 期刊:
- 影响因子:1.8
- 作者:Lin, Tica;Chen, Zhutian;Beyer, Johanna;Wu, Yingcai;Pfister, Hanspeter;Yang, Yalong
- 通讯作者:Yang, Yalong
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hanspeter Pfister其他文献
Is embodied interaction beneficial? A study on navigating network visualizations
具身互动有益吗?
- DOI:
10.1177/14738716231157082 - 发表时间:
2023 - 期刊:
- 影响因子:2.3
- 作者:
Helen H. Huang;Hanspeter Pfister;Yalong Yang - 通讯作者:
Yalong Yang
Imaging a 1 mm 3 Volume of Rat Cortex Using a MultiBeam SEM
使用多束 SEM 对 1 mm 3 体积的大鼠皮层进行成像
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:2.8
- 作者:
R. Schalek;Dongil Lee;N. Kasthuri;A. Peleg;T. Jones;V. Kaynig;D. Haehn;Hanspeter Pfister;D. Cox;J. Lichtman - 通讯作者:
J. Lichtman
The Quest for : Embedded Visualization for Augmenting Basketball Game Viewing Experiences
追求:增强篮球比赛观看体验的嵌入式可视化
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:5.2
- 作者:
Tica Lin;Zhutian Chen;Yalong Yang;Daniele Chiappalupi;Johanna Beyer;Hanspeter Pfister - 通讯作者:
Hanspeter Pfister
Acquisition and Rendering of Transparent and Refractive Objects
透明和折射物体的采集和渲染
- DOI:
10.2312/egwr/egwr02/267-278 - 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Wojciech Matusik;Hanspeter Pfister;Remo Ziegler;A. Ngan;Leonard McMillan - 通讯作者:
Leonard McMillan
DataSelfie: Empowering People to Design Personalized Visuals to Represent Their Data
DataSelfie:让人们能够设计个性化视觉效果来表示他们的数据
- DOI:
10.1145/3290605.3300309 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Nam Wook Kim;Hyejin Im;N. Riche;Alicia Wang;Krzysztof Z. Gajos;Hanspeter Pfister - 通讯作者:
Hanspeter Pfister
Hanspeter Pfister的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hanspeter Pfister', 18)}}的其他基金
NCS-FO: Empowering Data-Driven Hypothesis Generation for Scalable Connectomics Analysis
NCS-FO:为可扩展的连接组学分析提供数据驱动的假设生成
- 批准号:
2124179 - 财政年份:2021
- 资助金额:
$ 40.35万 - 项目类别:
Standard Grant
III: Medium: Visually Interactive Neural Probabilistic Models of Language
III:媒介:语言的视觉交互神经概率模型
- 批准号:
1901030 - 财政年份:2019
- 资助金额:
$ 40.35万 - 项目类别:
Continuing Grant
NCS-FO: Analyzing Synapses, Motifs and Neural Networks for Large-Scale Connectomics
NCS-FO:分析大规模连接组学的突触、基序和神经网络
- 批准号:
1835231 - 财政年份:2018
- 资助金额:
$ 40.35万 - 项目类别:
Standard Grant
US-Israel Collaboration: Collaborative Research: New Tools for Extracting Neuronal Phenotypes from a Volumetric Set of Cerebral Cortex Images
美国-以色列合作:合作研究:从大脑皮层体积图像中提取神经元表型的新工具
- 批准号:
1607800 - 财政年份:2016
- 资助金额:
$ 40.35万 - 项目类别:
Standard Grant
BIGDATA: IA: DKA: Collaborative Research: High-Throughput Connectomics
大数据:IA:DKA:协作研究:高通量连接组学
- 批准号:
1447344 - 财政年份:2014
- 资助金额:
$ 40.35万 - 项目类别:
Standard Grant
CGV: Large: Collaborative Research: Analyzing Images Through Time
CGV:大型:协作研究:随时间分析图像
- 批准号:
1110955 - 财政年份:2011
- 资助金额:
$ 40.35万 - 项目类别:
Continuing Grant
CGV: Small: Collaborative Research: From Virtual to Real
CGV:小型:协作研究:从虚拟到真实
- 批准号:
1116619 - 财政年份:2011
- 资助金额:
$ 40.35万 - 项目类别:
Standard Grant
CDI Type II: Scientific Computation for Astronomy, Neurobiology and Chemistry using Graphics Processing Units and Solid-State Storage
CDI 类型 II:使用图形处理单元和固态存储进行天文学、神经生物学和化学的科学计算
- 批准号:
0835713 - 财政年份:2008
- 资助金额:
$ 40.35万 - 项目类别:
Standard Grant
相似海外基金
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
- 批准号:
2420691 - 财政年份:2024
- 资助金额:
$ 40.35万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
- 批准号:
2312865 - 财政年份:2023
- 资助金额:
$ 40.35万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312932 - 财政年份:2023
- 资助金额:
$ 40.35万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
- 批准号:
2348169 - 财政年份:2023
- 资助金额:
$ 40.35万 - 项目类别:
Continuing Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
- 批准号:
2415562 - 财政年份:2023
- 资助金额:
$ 40.35万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
- 批准号:
2347592 - 财政年份:2023
- 资助金额:
$ 40.35万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Knowledge discovery from highly heterogeneous, sparse and private data in biomedical informatics
合作研究:III:中:生物医学信息学中高度异构、稀疏和私有数据的知识发现
- 批准号:
2312862 - 财政年份:2023
- 资助金额:
$ 40.35万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312930 - 财政年份:2023
- 资助金额:
$ 40.35万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
- 批准号:
2312501 - 财政年份:2023
- 资助金额:
$ 40.35万 - 项目类别:
Standard Grant
Collaborative Research: IIS: III: MEDIUM: Learning Protein-ish: Foundational Insight on Protein Language Models for Better Understanding, Democratized Access, and Discovery
协作研究:IIS:III:中等:学习蛋白质:对蛋白质语言模型的基础洞察,以更好地理解、民主化访问和发现
- 批准号:
2310113 - 财政年份:2023
- 资助金额:
$ 40.35万 - 项目类别:
Standard Grant