CGV: Large: Collaborative Research: Analyzing Images Through Time
CGV:大型:协作研究:随时间分析图像
基本信息
- 批准号:1110955
- 负责人:
- 金额:$ 42.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This collaborative research project leverages expertise of four research teams (IIS-1111415, Massachusetts Institute of Technology; IIS-1110955, Harvard University; IIS-1111398, Washington University; and IIS-1111534, Cornell University). Understanding time-varying processes and phenomena is fundamental to science and engineering. Due to tremendous progress in digital photography, images and videos (including images from webcams, time- lapse photography captured by scientists, surveillance videos, and Internet photo collections) are becoming an important source of information about our dynamic world. However, techniques for automated understanding and visualization of time-varying processes from images or videos are scarce and underdeveloped, requiring fundamental new models and algorithms for representing changes over time. This research involves creating systems that enable modeling, analysis, and visualization of time-varying processes based on image data. These models and algorithms will form the basis for a new set of tools that can help answer important questions about how our environment is changing, how our cities are evolving, and what significant events are happening around the world.Analyzing images over time poses fundamental new technical challenges. This project focuses on developing and demonstrating end-to-end systems consisting of (1) novel representations necessary to model time-varying image datasets; (2) algorithms for estimating long-range temporal correspondence in image datasets; (3) algorithms for decomposing image datasets into intuitive primitives such as shading, illumination, reflectance, and motion; (4) analysis tools for deriving higher level information from the decomposed representations (e.g., trends, repeated patterns, and unusual events); and (5) tools for visualization of the high-level information and methods for re-synthesis of image data.This work has the potential to have significant impact in a broad range of areas where images are generated over time, e.g., in ecology, astronomy, urban planning, health, and many others. The results of this research will be broadly disseminated by making source code and datasets publicly available via the project web site (https://groups.csail.mit.edu/vision/image_time/) and offering tutorials and organizing workshops at significant conferences. The project provides educational opportunities and offers hands-on collaborative research experience to students at both the undergraduate and graduate levels and the four institutions.
该合作研究项目利用了四个研究团队的专业知识(IIS-1111415,马萨诸塞州理工学院; IIS-1110955,哈佛大学; IIS-1111398,华盛顿大学;和IIS-1111534,康奈尔大学)。理解时变过程和现象是科学和工程的基础。由于数字摄影的巨大进步,图像和视频(包括来自网络摄像头的图像,科学家拍摄的延时摄影,监控视频和互联网照片集)正在成为我们动态世界的重要信息来源。然而,用于从图像或视频中自动理解和可视化时变过程的技术是稀缺和不发达的,需要基本的新模型和算法来表示随时间的变化。这项研究涉及创建系统,使建模,分析和可视化的时变过程的基础上图像数据。这些模型和算法将构成一套新工具的基础,这些工具可以帮助回答有关我们的环境如何变化、我们的城市如何发展以及世界各地正在发生什么重大事件等重要问题。分析图像随时间的变化带来了根本性的新技术挑战。该项目的重点是开发和演示端到端系统,包括:(1)建模时变图像数据集所需的新颖表示;(2)估计图像数据集中长距离时间对应关系的算法;(3)将图像数据集分解为直观图元(如阴影、照明、反射和运动)的算法;(4)用于从分解的表示导出更高级信息的分析工具(例如,趋势、重复模式和不寻常事件);以及(5)高级别信息可视化工具和图像数据再合成方法。这项工作有可能在随着时间推移生成图像的广泛领域产生重大影响,例如,在生态学、天文学、城市规划、健康和许多其他方面。将通过项目网站(https://groups.csail.mit.edu/vision/image_time/)公布源代码和数据集,并在重要会议上提供教程和组织讲习班,广泛传播这项研究的结果。该项目为本科生和研究生以及四个机构的学生提供教育机会,并提供实践合作研究经验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hanspeter Pfister其他文献
Is embodied interaction beneficial? A study on navigating network visualizations
具身互动有益吗?
- DOI:
10.1177/14738716231157082 - 发表时间:
2023 - 期刊:
- 影响因子:2.3
- 作者:
Helen H. Huang;Hanspeter Pfister;Yalong Yang - 通讯作者:
Yalong Yang
Imaging a 1 mm 3 Volume of Rat Cortex Using a MultiBeam SEM
使用多束 SEM 对 1 mm 3 体积的大鼠皮层进行成像
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:2.8
- 作者:
R. Schalek;Dongil Lee;N. Kasthuri;A. Peleg;T. Jones;V. Kaynig;D. Haehn;Hanspeter Pfister;D. Cox;J. Lichtman - 通讯作者:
J. Lichtman
The Quest for : Embedded Visualization for Augmenting Basketball Game Viewing Experiences
追求:增强篮球比赛观看体验的嵌入式可视化
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:5.2
- 作者:
Tica Lin;Zhutian Chen;Yalong Yang;Daniele Chiappalupi;Johanna Beyer;Hanspeter Pfister - 通讯作者:
Hanspeter Pfister
Acquisition and Rendering of Transparent and Refractive Objects
透明和折射物体的采集和渲染
- DOI:
10.2312/egwr/egwr02/267-278 - 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Wojciech Matusik;Hanspeter Pfister;Remo Ziegler;A. Ngan;Leonard McMillan - 通讯作者:
Leonard McMillan
DataSelfie: Empowering People to Design Personalized Visuals to Represent Their Data
DataSelfie:让人们能够设计个性化视觉效果来表示他们的数据
- DOI:
10.1145/3290605.3300309 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Nam Wook Kim;Hyejin Im;N. Riche;Alicia Wang;Krzysztof Z. Gajos;Hanspeter Pfister - 通讯作者:
Hanspeter Pfister
Hanspeter Pfister的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hanspeter Pfister', 18)}}的其他基金
III: Medium: Collaborative Research: Situated Visual Information Spaces
III:媒介:协作研究:情境视觉信息空间
- 批准号:
2107328 - 财政年份:2021
- 资助金额:
$ 42.37万 - 项目类别:
Continuing Grant
NCS-FO: Empowering Data-Driven Hypothesis Generation for Scalable Connectomics Analysis
NCS-FO:为可扩展的连接组学分析提供数据驱动的假设生成
- 批准号:
2124179 - 财政年份:2021
- 资助金额:
$ 42.37万 - 项目类别:
Standard Grant
III: Medium: Visually Interactive Neural Probabilistic Models of Language
III:媒介:语言的视觉交互神经概率模型
- 批准号:
1901030 - 财政年份:2019
- 资助金额:
$ 42.37万 - 项目类别:
Continuing Grant
NCS-FO: Analyzing Synapses, Motifs and Neural Networks for Large-Scale Connectomics
NCS-FO:分析大规模连接组学的突触、基序和神经网络
- 批准号:
1835231 - 财政年份:2018
- 资助金额:
$ 42.37万 - 项目类别:
Standard Grant
US-Israel Collaboration: Collaborative Research: New Tools for Extracting Neuronal Phenotypes from a Volumetric Set of Cerebral Cortex Images
美国-以色列合作:合作研究:从大脑皮层体积图像中提取神经元表型的新工具
- 批准号:
1607800 - 财政年份:2016
- 资助金额:
$ 42.37万 - 项目类别:
Standard Grant
BIGDATA: IA: DKA: Collaborative Research: High-Throughput Connectomics
大数据:IA:DKA:协作研究:高通量连接组学
- 批准号:
1447344 - 财政年份:2014
- 资助金额:
$ 42.37万 - 项目类别:
Standard Grant
CGV: Small: Collaborative Research: From Virtual to Real
CGV:小型:协作研究:从虚拟到真实
- 批准号:
1116619 - 财政年份:2011
- 资助金额:
$ 42.37万 - 项目类别:
Standard Grant
CDI Type II: Scientific Computation for Astronomy, Neurobiology and Chemistry using Graphics Processing Units and Solid-State Storage
CDI 类型 II:使用图形处理单元和固态存储进行天文学、神经生物学和化学的科学计算
- 批准号:
0835713 - 财政年份:2008
- 资助金额:
$ 42.37万 - 项目类别:
Standard Grant
相似国自然基金
水稻穗粒数调控关键因子LARGE6的分子遗传网络解析
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
量子自旋液体中拓扑拟粒子的性质:量子蒙特卡罗和新的large-N理论
- 批准号:
- 批准年份:2020
- 资助金额:62 万元
- 项目类别:面上项目
甘蓝型油菜Large Grain基因调控粒重的分子机制研究
- 批准号:31972875
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
Large PB/PB小鼠 视网膜新生血管模型的研究
- 批准号:30971650
- 批准年份:2009
- 资助金额:8.0 万元
- 项目类别:面上项目
基因discs large在果蝇卵母细胞的后端定位及其体轴极性形成中的作用机制
- 批准号:30800648
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
LARGE基因对口腔癌细胞中α-DG糖基化及表达的分子调控
- 批准号:30772435
- 批准年份:2007
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
CGV: Large: Collaborative Research: Coupling Simulation and Mesh Generation using Computational Topology
CGV:大型:协作研究:使用计算拓扑进行耦合仿真和网格生成
- 批准号:
1654221 - 财政年份:2016
- 资助金额:
$ 42.37万 - 项目类别:
Standard Grant
CGV: Large: Collaborative Research: Modeling, Display, and Understanding Uncertainty in Simulations for Policy Decision Making
CGV:大型:协作研究:建模、显示和理解政策决策模拟中的不确定性
- 批准号:
1540469 - 财政年份:2014
- 资助金额:
$ 42.37万 - 项目类别:
Standard Grant
CGV: Large: Collaborative Research: Coupling Simulation and Mesh Generation using Computational Topology
CGV:大型:协作研究:使用计算拓扑进行耦合仿真和网格生成
- 批准号:
1314757 - 财政年份:2013
- 资助金额:
$ 42.37万 - 项目类别:
Standard Grant
CGV: Large: Collaborative Research: Coupling Simulation and Mesh Generation using Computational Topology
CGV:大型:协作研究:使用计算拓扑进行耦合仿真和网格生成
- 批准号:
1314813 - 财政年份:2013
- 资助金额:
$ 42.37万 - 项目类别:
Standard Grant
CGV: Large: Collaborative Research: Coupling Simulation and Mesh Generation using Computational Topology
CGV:大型:协作研究:使用计算拓扑进行耦合仿真和网格生成
- 批准号:
1314896 - 财政年份:2013
- 资助金额:
$ 42.37万 - 项目类别:
Continuing Grant
CGV: Large: Collaborative Research: Modeling, Display, and Understanding Uncertainty in Simulations for Policy Decision Making
CGV:大型:协作研究:建模、显示和理解政策决策模拟中的不确定性
- 批准号:
1212501 - 财政年份:2012
- 资助金额:
$ 42.37万 - 项目类别:
Standard Grant
CGV: Large: Collaborative Research: Modeling, Display, and Understanding Uncertainty in Simulations for Policy Decision Making
CGV:大型:协作研究:建模、显示和理解政策决策模拟中的不确定性
- 批准号:
1212790 - 财政年份:2012
- 资助金额:
$ 42.37万 - 项目类别:
Standard Grant
CGV: Large: Collaborative Research: Modeling, Display, and Understanding Uncertainty in Simulations for Policy Decision Making
CGV:大型:协作研究:建模、显示和理解政策决策模拟中的不确定性
- 批准号:
1212806 - 财政年份:2012
- 资助金额:
$ 42.37万 - 项目类别:
Standard Grant
CGV: Large: Collaborative Research: Modeling, Display, and Understanding Uncertainty in Simulations for Policy Decision Making
CGV:大型:协作研究:建模、显示和理解政策决策模拟中的不确定性
- 批准号:
1212577 - 财政年份:2012
- 资助金额:
$ 42.37万 - 项目类别:
Standard Grant
CGV: Large: Collaborative Research: Analyzing Images Through Time
CGV:大型:协作研究:随时间分析图像
- 批准号:
1111398 - 财政年份:2011
- 资助金额:
$ 42.37万 - 项目类别:
Continuing Grant