Dynein function at the vertebrate kinetochore
脊椎动物动粒的动力蛋白功能
基本信息
- 批准号:2107444
- 负责人:
- 金额:$ 109.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Cell division (mitosis) is one of the most fundamental biological processes. It is remarkable as every division must take place with exceedingly high fidelity. Infidelity of the process leads to various afflictions, including cell death. Each cell’s duplicated genetic information – contained within chromosomes – must be equally (and faithfully) divided between the two daughter cells and the high degree of accuracy in this process is the consequence of a complex network of safety mechanisms that ensures mistakes are corrected prior to the completion of mitosis. The molecular machinery that ensures high-fidelity chromosome inheritance from mother to daughter cells includes an elaborate arrangement of filamentous structures called microtubules, and large protein-based structures assembled upon the chromosomes called kinetochores. Proper division of the genetic material requires that all duplicated chromosomes physically connect to microtubules through their kinetochores, allowing the chromosomes to become organized and aligned at the center of the cell in preparation for division. Kinetochores must make mechanically stable attachments to microtubules, and it is through these stable connections that duplicated sister chromosomes are both driven to the middle of the cell, then pulled apart towards the end of mitosis. Cells contain a monitoring system (a “checkpoint”) that prevents cells from exiting mitosis until all kinetochores are properly attached to microtubules such that they are poised to faithfully divide the chromosomes. While it is known that kinetochores monitor and regulate their own attachment status, how the attachment status of each kinetochore is relayed to the checkpoint machinery is unknown. The goals of this research project are to determine how a molecular motor, called dynein, affects and facilitates: (1) chromosome alignment, and (2) mitotic checkpoint signaling. The results from this project will have a significant impact on our understanding of mitotic cell division, and how the underlying molecular processes ensure it takes place with high fidelity. The Broader Impacts of the work include the inherent importance of this process to all multi-cellular life on the planet, together with outreach work that will be carried out at the community level and to elementary school students. The goal of this project is to understand how the microtubule motor protein dynein functions at kinetochores to promote faithful segregation of chromosomes during cell division. Cells possess complex mechanisms that ensure chromosome segregation occurs with remarkably high fidelity. During cell division, microtubules that comprise the mitotic spindle facilitate separation of sister chromatids through direct attachments to kinetochores, large macromolecular assemblies built upon centromeric DNA. Cells employ at least two critical mechanisms to minimize errors during this process: (A) The spindle assembly checkpoint prevents mitotic progression until all chromosomes have established proper kinetochore-microtubule attachments. Effectors of this checkpoint accumulate on improperly or unattached kinetochores, and consequently transmit a “wait anaphase” signal. Only upon establishment of proper attachments are these proteins evicted from kinetochores, which silences the inhibitory signal, thereby promoting anaphase onset. (B) The error correction pathway promotes the release of incorrect kinetochore-microtubule attachments, thereby allowing them to “reset” and form new, correct attachments. A key effector of both these processes is the microtubule motor protein dynein, which (1) transports checkpoint effectors away from kinetochores upon proper microtubule attachment, and (2) transports erroneously attached chromosomes to spindle poles, where they have a high likelihood of being corrected. The researchers will use a combination of in vitro and in-cell approaches to understand the role for dynein in both of these critical mitotic processes.This research is funded by the Cellular Dynamics and Function program in the Division of Molecular and Cellular Biosciences in the Directorate of Biological Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
细胞分裂(有丝分裂)是最基本的生物学过程之一。这是值得注意的,因为每一次划分都必须以非常高的保真度进行。这一过程的不忠会导致各种痛苦,包括细胞死亡。每个细胞的复制遗传信息--包含在染色体中--必须在两个子细胞之间平均(且忠实地)分配,这一过程中的高度准确性是复杂的安全机制网络的结果,该网络确保在完成有丝分裂之前纠正错误。确保从母体细胞到子代细胞的高保真染色体遗传的分子机制包括一种称为微管的丝状结构的精心排列,以及组装在染色体上的称为动点的大型蛋白质结构。遗传物质的正确分裂需要所有复制的染色体通过它们的着丝点物理上连接到微管,使染色体变得有组织,并在细胞中心排列,为分裂做准备。动点必须在机械上稳定地附着在微管上,正是通过这些稳定的连接,复制的姐妹染色体都被驱动到细胞的中央,然后在有丝分裂结束时被撕裂。细胞包含一个监测系统(“检查点”),它防止细胞退出有丝分裂,直到所有的动点都正确地附着在微管上,以便它们能够忠实地分裂染色体。虽然已经知道动粒监控和调节它们自己的附着状态,但每个动粒的附着状态是如何传递到检查点机器的还不清楚。这项研究项目的目标是确定一种名为动力蛋白的分子马达如何影响和促进:(1)染色体比对和(2)有丝分裂检查点信号。这个项目的结果将对我们理解有丝分裂细胞分裂以及潜在的分子过程如何确保它以高保真进行产生重大影响。这项工作的更广泛影响包括这一进程对地球上所有多细胞生命的内在重要性,以及将在社区一级和小学生一级开展的外联工作。这个项目的目标是了解微管运动蛋白dynein如何在运动中枢发挥作用,以促进细胞分裂过程中染色体的忠实分离。细胞拥有复杂的机制,确保染色体分离以非常高的保真度发生。在细胞分裂过程中,组成有丝分裂纺锤体的微管通过直接连接到着丝粒,即建立在着丝粒DNA上的大分子组件,促进姐妹染色单体的分离。细胞在这一过程中至少使用两种关键机制来减少错误:(A)纺锤体组装检查点阻止有丝分裂进行,直到所有染色体都建立了适当的动粒-微管连接。此检查点的效应器累积在不正确或未连接的运动中枢上,因此会发送“等待后期”信号。只有在建立了适当的附着后,这些蛋白质才会从动粒中被驱逐出去,从而抑制抑制信号,从而促进后期的开始。(B)纠错通路促进不正确的动粒-微管附着的释放,从而允许它们“重置”并形成新的、正确的附着。这两个过程的一个关键效应器是微管马达蛋白Dynein,它(1)在适当的微管连接时将检查点效应器从运动中枢转移出去,(2)将错误连接的染色体传输到纺锤体极,在那里它们很有可能被纠正。研究人员将使用体外和细胞内方法相结合的方法来了解动力蛋白在这两个关键有丝分裂过程中的作用。这项研究由生物科学局分子和细胞生物科学部门的细胞动力学和功能计划资助。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Markus其他文献
Steven Markus的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
CBP/p300-HADH轴在基础胰岛素分泌调节中的作用和机制研究
- 批准号:82370798
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
PRNP调控巨噬细胞M2极化并减弱吞噬功能促进子宫内膜异位症进展的机制研究
- 批准号:82371651
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
配子生成素GGN不同位点突变损伤分子伴侣BIP及HSP90B1功能导致精子形成障碍的发病机理
- 批准号:82371616
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
Idh3a作为线粒体代谢—表观遗传检查点调控产热脂肪功能的机制研究
- 批准号:82370851
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
基于再生运动神经路径优化Agrin作用促进损伤神经靶向投射的功能研究
- 批准号:82371373
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
PROCR信号通路介导的血管新生在卵巢组织移植中的作用及机制研究
- 批准号:82371726
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
GASP-1通过Myostatin信号通路调控颏舌肌功能的作用及机制研究
- 批准号:82371131
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
G蛋白偶联受体GPR110调控Lp-PLA2抑制非酒精性脂肪性肝炎的作用及机制研究
- 批准号:82370865
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
双硫仑结合并抑制谷氨酸脱氢酶1活性调节Th17/Treg细胞平衡的作用与机制探究
- 批准号:82371755
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
犬尿氨酸酶KYNU参与非酒精性脂肪肝进展为肝纤维化的作用和机制研究
- 批准号:82370874
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
Temporal Analysis of Combinatorial Gene Function during Vertebrate Body Elongation
脊椎动物身体伸长过程中组合基因功能的时间分析
- 批准号:
10606014 - 财政年份:2023
- 资助金额:
$ 109.53万 - 项目类别:
The contribution of plasticity to the recovery of retinal function following gene therapy
可塑性对基因治疗后视网膜功能恢复的贡献
- 批准号:
10591954 - 财政年份:2023
- 资助金额:
$ 109.53万 - 项目类别:
Modulation of cone photoreceptor function by autophagy
自噬调节视锥光感受器功能
- 批准号:
10681018 - 财政年份:2023
- 资助金额:
$ 109.53万 - 项目类别:
Statistical and high-throughput models of enhancer function and evolution
增强子功能和进化的统计和高通量模型
- 批准号:
10846272 - 财政年份:2023
- 资助金额:
$ 109.53万 - 项目类别:
Natural model for evaluating within- and cross-species virus transmission
评估物种内和跨物种病毒传播的自然模型
- 批准号:
10735974 - 财政年份:2023
- 资助金额:
$ 109.53万 - 项目类别:
Neuron-specific modulations of vertebrate myelination and their effects on neuronal function
脊椎动物髓鞘形成的神经元特异性调节及其对神经元功能的影响
- 批准号:
2890801 - 财政年份:2023
- 资助金额:
$ 109.53万 - 项目类别:
Studentship
Opening small packages: unraveling roles for microproteins during early vertebrate development
打开小包装:揭示微生物蛋白在早期脊椎动物发育过程中的作用
- 批准号:
10678492 - 财政年份:2023
- 资助金额:
$ 109.53万 - 项目类别:
Mitigating retinitis pigmentosa based on a non-invasive rod energy-landscape biomarker
基于非侵入性棒状能量景观生物标志物减轻色素性视网膜炎
- 批准号:
10733154 - 财政年份:2023
- 资助金额:
$ 109.53万 - 项目类别:
Impact of sex and age on non-visual light input that affects sleep and circadian rhythms
性别和年龄对影响睡眠和昼夜节律的非视觉光输入的影响
- 批准号:
10733290 - 财政年份:2023
- 资助金额:
$ 109.53万 - 项目类别:














{{item.name}}会员




