III: Medium: Collaborative Research: MUDL: Multidimensional Uncertainty-Aware Deep Learning Framework
III:媒介:协作研究:MUDL:多维不确定性感知深度学习框架
基本信息
- 批准号:2107449
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
People encounter serious hurdles in finding effective decision-making solutions to real world problems because of uncertainty from a lack of information, conflicting information, and/or unsure observations. Critical safety concerns have been consistently highlighted because how to interpret this uncertainty has not been carefully investigated. If the uncertainty is misinterpreted, this can result in unnecessary risk. For example, a self-driving autonomous car can misdetect a human in the road. An artificial intelligence-based medical assistant may misdiagnose cancer as a benign tumor. Further, a phishing email can be detected as a normal email. The consequences of all these misdetections or misclassifications caused by different types of uncertainty adds risk and potential adverse events. Artificial intelligence (AI) researchers have actively explored how to solve various decision-making problems under uncertainty. However, no prior research has looked into how different approaches of studying uncertainty in AI can leverage each other. This project studies how to measure different causes of uncertainty and use them to solve diverse decision-making problems more effectively. This project can help develop trustworthy AI algorithms that can be used in many real world decision-making problems. In addition, this project is highly transdisciplinary so that it can encourage broader, newer, and more diverse approaches. To magnify the impact of this project in research and education, this project leverages multicultural, diversity, and STEM programs for students with diverse backgrounds and under-represented populations. This project also includes seminar talks, workshops, short courses, and/or research projects for high school and community college students. This project aims to develop a suite of deep learning (DL) techniques by considering multiple types of uncertainties caused by different root causes and employ them to maximize the effectiveness of decision-making in the presence of highly intelligent, adversarial attacks. This project makes a synergistic but transformative research effort to study: (1) how different types of uncertainties can be quantified based on belief theory; (2) how the estimates of different types of uncertainties can be considered in DL-based approaches; and (3) how multiple types of uncertainties influence the effectiveness and efficiency of decision-making in high-dimensional, complex problems. This project advances the state-of-the-art research by performing the following: (1) Proposing a scalable, robust unified DL-based framework to effectively infer predictive multidimensional uncertainty caused by heterogeneous root causes in adversarial environments. (2) Dealing with multidimensional uncertainty based on neural networks. (3) Enhancing both decision effectiveness and efficiency by considering multidimensional uncertainty-aware designs. (4) Testing proposed approaches to ensure their robustness in the presence of intelligent adversarial attackers with advanced deception tactics based on both simulation models and visualization tools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人们在为现实世界的问题寻找有效的决策解决方案时遇到了严重的障碍,因为缺乏信息、相互冲突的信息和/或不确定的观察带来的不确定性。关键的安全问题一直被强调,因为如何解释这种不确定性没有得到仔细的调查。如果这种不确定性被曲解,可能会导致不必要的风险。例如,自动驾驶汽车可能会误判道路上的人类。基于人工智能的医疗助理可能会将癌症误诊为良性肿瘤。此外,钓鱼电子邮件可以被检测为正常电子邮件。由不同类型的不确定性造成的所有这些误判或错误分类的后果增加了风险和潜在的不利事件。人工智能(AI)研究人员积极探索如何解决不确定条件下的各种决策问题。然而,之前没有研究过研究人工智能不确定性的不同方法如何相互影响。这个项目研究如何衡量不确定性的不同原因,并使用它们来更有效地解决各种决策问题。这个项目可以帮助开发可靠的人工智能算法,可以用于许多现实世界的决策问题。此外,这个项目是高度跨学科的,因此它可以鼓励更广泛、更新和更多样化的方法。为了扩大该项目在研究和教育方面的影响,该项目利用多元文化、多样性和STEM项目,面向不同背景和代表性不足的学生。该项目还包括为高中生和社区大学学生举办的研讨会讲座、研讨会、短期课程和/或研究项目。该项目旨在开发一套深度学习(DL)技术,通过考虑由不同根本原因造成的多种类型的不确定性,并使用它们来最大限度地提高存在高度智能的对抗性攻击时的决策效率。该项目进行了一项协同性但变革性的研究工作,以研究:(1)如何基于信念理论对不同类型的不确定性进行量化;(2)如何在基于DL的方法中考虑不同类型的不确定性的估计;以及(3)在高维、复杂问题中,多种类型的不确定性如何影响决策的有效性和效率。(1)提出了一个可扩展的、健壮的、统一的基于DL的框架,以有效地推断由对抗环境中的异质根源引起的预测性多维不确定性。(2)基于神经网络的多维不确定性处理。(3)考虑多维不确定性感知设计,提高决策的有效性和效率。(4)测试提出的方法,以确保其在智能对手攻击者面前的稳健性,基于模拟模型和可视化工具的先进欺骗策略。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Interactive Web-Based Visual Analysis on Network Traffic Data
基于交互式网络的网络流量数据可视化分析
- DOI:10.3390/info14010016
- 发表时间:2023
- 期刊:
- 影响因子:3.1
- 作者:Jeong, Dong Hyun;Cho, Jin-Hee;Chen, Feng;Kaplan, Lance;Jøsang, Audun;Ji, Soo-Yeon
- 通讯作者:Ji, Soo-Yeon
A survey on uncertainty reasoning and quantification in belief theory and its application to deep learning
- DOI:10.1016/j.inffus.2023.101987
- 发表时间:2023-08
- 期刊:
- 影响因子:0
- 作者:Zhen Guo;Zelin Wan;Qisheng Zhang;Xujiang Zhao;Qi Zhang;L. Kaplan;A. Jøsang;Dong-Ho Jeong
- 通讯作者:Zhen Guo;Zelin Wan;Qisheng Zhang;Xujiang Zhao;Qi Zhang;L. Kaplan;A. Jøsang;Dong-Ho Jeong
Multi-Label Temporal Evidential Neural Networks for Early Event Detection
- DOI:10.1109/icassp49357.2023.10096305
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Xujiang Zhao;Xuchao Zhang;Chengli Zhao;Jinny Cho;L. Kaplan;D. Jeong;A. Jøsang;Haifeng Chen;F. Chen
- 通讯作者:Xujiang Zhao;Xuchao Zhang;Chengli Zhao;Jinny Cho;L. Kaplan;D. Jeong;A. Jøsang;Haifeng Chen;F. Chen
How Out-of-Distribution Data Hurts Semi-Supervised Learning
- DOI:10.1109/icdm54844.2022.00087
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:Xujiang Zhao;Killamsetty Krishnateja;Rishabh K. Iyer;Feng Chen
- 通讯作者:Xujiang Zhao;Killamsetty Krishnateja;Rishabh K. Iyer;Feng Chen
Active Learning on Neural Networks through Interactive Generation of Digit Patterns and Visual Representation
- DOI:10.1109/isec57711.2023.10402169
- 发表时间:2023-03
- 期刊:
- 影响因子:0
- 作者:Dong H. Jeong;Jin-Hee Cho;Feng Chen;A. Jøsang;Soo-Yeon Ji
- 通讯作者:Dong H. Jeong;Jin-Hee Cho;Feng Chen;A. Jøsang;Soo-Yeon Ji
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Feng Chen其他文献
In situ self-transformation synthesis of g-C3N4-modified CdS heterostructure with enhanced photocatalytic activity
原位自转化合成具有增强光催化活性的g-C3N4修饰的CdS异质结构
- DOI:
10.1016/j.apsusc.2015.06.074 - 发表时间:
2015-12 - 期刊:
- 影响因子:6.7
- 作者:
Huogen Yu;Fengyun Chen;Feng Chen;Xuefei Wang - 通讯作者:
Xuefei Wang
Determination of iodine in seawater: methods and applications
海水中碘的测定:方法和应用
- DOI:
10.1016/b978-0-12-374135-6.00001-7 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Huabin Li;Xiangrong Xu;Feng Chen - 通讯作者:
Feng Chen
A preliminary investigation of metal element profiles in the serum of patients with bloodstream infections using inductively-coupled plasma mass spectrometry (ICP-MS)
使用电感耦合等离子体质谱 (ICP-MS) 对血流感染患者血清中金属元素谱进行初步研究
- DOI:
10.1016/j.cca.2018.07.013 - 发表时间:
2018 - 期刊:
- 影响因子:5
- 作者:
Suying Zhao;Shuyuan Cao;Lan Luo;Zhan Zhang;Gehui Yuan;Yanan Zhang;Yanting Yang;Weihui Guo;Li Wang;Feng Chen;Qian Wu;Lei Li - 通讯作者:
Lei Li
Development and Validation of a Novel Predictive Model for the Early Differentiation of Cardiac and Non-Cardiac Syncope
心源性晕厥和非心源性晕厥早期区分的新型预测模型的开发和验证
- DOI:
10.2147/ijgm.s454521 - 发表时间:
2024 - 期刊:
- 影响因子:2.3
- 作者:
Sijin Wu;Zhongli Chen;Yuan Gao;S. Shu;Feng Chen;Ying Wu;Yan Dai;Shu Zhang;Keping Chen - 通讯作者:
Keping Chen
Training of Multi-class Linear Classifier with BFGS Method
用BFGS方法训练多类线性分类器
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Xiaobo Jin;Junwei Yu;Feng Chen;Pengfei Zhu - 通讯作者:
Pengfei Zhu
Feng Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Feng Chen', 18)}}的其他基金
ATD: Sparse and Localized Graph Convolutional Networks for Anomaly Detection and Active Learning
ATD:用于异常检测和主动学习的稀疏和局部图卷积网络
- 批准号:
2220574 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Hardware and Software Support for Memory-Centric Computing Systems
协作研究:SHF:中:以内存为中心的计算系统的硬件和软件支持
- 批准号:
2312509 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
FAI: A novel paradigm for fairness-aware deep learning models on data streams
FAI:数据流上具有公平意识的深度学习模型的新颖范式
- 批准号:
2147375 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: A New Direction of Research and Development to Fulfill the Promise of Computational Storage
合作研究:SHF:Medium:实现计算存储承诺的研发新方向
- 批准号:
2210755 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
III: Small: Collaborative Research: A novel paradigm for detecting complex anomalous patterns in multi-modal, heterogeneous, and high-dimensional multi-source data sets
III:小型:协作研究:一种检测多模态、异构和高维多源数据集中复杂异常模式的新范式
- 批准号:
1954409 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: SPARK: A Theoretical Framework for Discovering Complex Patterns in Big Attributed Networks
职业:SPARK:发现大属性网络中复杂模式的理论框架
- 批准号:
1954376 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
SHF: Small: Redesigning the System Architecture for Ultra-High Density Data Storage
SHF:小型:重新设计超高密度数据存储的系统架构
- 批准号:
1910958 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: SPARK: A Theoretical Framework for Discovering Complex Patterns in Big Attributed Networks
职业:SPARK:发现大属性网络中复杂模式的理论框架
- 批准号:
1750911 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
III: Small: Collaborative Research: A novel paradigm for detecting complex anomalous patterns in multi-modal, heterogeneous, and high-dimensional multi-source data sets
III:小型:协作研究:一种检测多模态、异构和高维多源数据集中复杂异常模式的新范式
- 批准号:
1815696 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
XPS: FULL: Collaborative Research: Maximizing the Performance Potential and Reliability of Flash-based Solid State Devices for Future Storage Systems
XPS:完整:协作研究:最大限度地提高未来存储系统基于闪存的固态设备的性能潜力和可靠性
- 批准号:
1629291 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似海外基金
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
- 批准号:
2420691 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
- 批准号:
2312865 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312932 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
- 批准号:
2415562 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
- 批准号:
2348169 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
- 批准号:
2312501 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Knowledge discovery from highly heterogeneous, sparse and private data in biomedical informatics
合作研究:III:中:生物医学信息学中高度异构、稀疏和私有数据的知识发现
- 批准号:
2312862 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312930 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
- 批准号:
2347592 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: IIS: III: MEDIUM: Learning Protein-ish: Foundational Insight on Protein Language Models for Better Understanding, Democratized Access, and Discovery
协作研究:IIS:III:中等:学习蛋白质:对蛋白质语言模型的基础洞察,以更好地理解、民主化访问和发现
- 批准号:
2310113 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant