FAI: A novel paradigm for fairness-aware deep learning models on data streams
FAI:数据流上具有公平意识的深度学习模型的新颖范式
基本信息
- 批准号:2147375
- 负责人:
- 金额:$ 39.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Massive amounts of information are transferred constantly between different domains in the form of data streams. Social networks, blogs, online businesses, and sensors all generate immense data streams. Such data streams are received in patterns that change over time. While this data can be assigned to specific categories, objects and events, their distribution is not constant. These categories are subject to distribution shifts. These distribution shifts are often due to the changes in the underlying environmental, geographical, economic, and cultural contexts. For example, the risks levels in loan applications have been subject to distribution shifts during the COVID-19 pandemic. This is because loan risks are based on factors associated to the applicants, such as employment status and income. Such factors are usually relatively stable, but have changed rapidly due to the economic impact of the pandemic. As a result, existing loan recommendation systems need to be adapted to limited examples. This project will develop open software to help users evaluate online fairness-in algorithms, mitigate potential biases, and examine utility-fairness trade-offs. It will implement two real-world applications: online crime event recognition from video data and online purchase behavior prediction from click-stream data. To amplify the impact of this project in research and education, this project will leverage STEM programs for students with diverse backgrounds, gender and race/ethnicity. This project includes activities including seminars, workshops, short courses, and research projects for students. This project aims to develop a new and innovative paradigm for designing, implementing, and evaluating online fairness-aware Deep Learning (DL) models. Such models would be used for classification tasks in noisy and non-stationary data streams. This project will focus on five areas. First, the project will explore how to ensure a variety of fairness principles are incorporated in a DL model in online and non-stationary settings. The project will also look at how to identify a neural network architecture that will reflect the causal structure and be adaptive to distribution shifts. The project also looks at how the DL model will learn global initialization of primal parameters (associated with model accuracy) and dual parameters (associated with model fairness). Finally, the project looks at how to make online learning algorithms robust to uncertainties in model estimation of fairness and how to, ultimately, interpret the fairness of an online DL model. By bridging the areas of neural architecture search, online meta-learning, and fairness-aware deep learning techniques, this project advances state-of-the-art research in Fairness in AI. This project will offer the following innovations: (1) disentangle underlying sensitive and non-sensitive causal variables from raw features via causal representation learning; (2) identify adaptive architectures for data streams via differential architecture search; (3) learn effective initializations for both primal and dual model parameters in an online-within-online manner; (4) develop robust versions of the algorithms to deal with uncertainties in model fairness and tasks, and (5) identify the training examples and latent causal variables responsible for model adaption using local and global interpretations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大量的信息以数据流的形式在不同的领域之间不断传递。社交网络、博客、在线业务和传感器都会产生巨大的数据流。这些数据流以随时间变化的模式接收。虽然这些数据可以分配给特定的类别、对象和事件,但它们的分布不是恒定的。这些类别受分布变化的影响。这些分布变化通常是由于潜在的环境、地理、经济和文化背景的变化。例如,在2019冠状病毒病大流行期间,贷款申请的风险水平受到分布变化的影响。这是因为贷款风险是基于与申请人相关的因素,如就业状况和收入。这些因素通常相对稳定,但由于大流行的经济影响,变化很快。因此,现有的贷款推荐系统需要适应有限的例子。该项目将开发开放软件,以帮助用户评估在线公平性算法,减轻潜在的偏见,并检查效用与公平性之间的权衡。它将实现两个现实世界的应用:从视频数据中识别在线犯罪事件,从点击流数据中预测在线购买行为。为了扩大该项目在研究和教育方面的影响,该项目将为不同背景、性别和种族/民族的学生提供STEM课程。该项目包括研讨会、工作坊、短期课程和学生研究项目等活动。该项目旨在开发一种新的创新范式,用于设计、实施和评估在线公平感知深度学习(DL)模型。这种模型将用于噪声和非平稳数据流中的分类任务。该项目将侧重于五个方面。首先,该项目将探索如何确保在在线和非平稳环境下将各种公平原则纳入DL模型。该项目还将研究如何确定一个神经网络架构,以反映因果结构并适应分布变化。该项目还研究了深度学习模型如何学习原始参数(与模型准确性相关)和双参数(与模型公平性相关)的全局初始化。最后,该项目着眼于如何使在线学习算法对模型公平性估计中的不确定性具有鲁棒性,以及如何最终解释在线DL模型的公平性。通过连接神经架构搜索、在线元学习和公平感知深度学习技术等领域,该项目推进了人工智能公平性方面的最新研究。该项目将提供以下创新:(1)通过因果表示学习从原始特征中分离潜在的敏感和非敏感因果变量;(2)通过差分架构搜索,识别数据流的自适应架构;(3)通过在线中在线的方式学习原始模型参数和对偶模型参数的有效初始化;(4)开发鲁棒版本的算法来处理模型公平性和任务中的不确定性;(5)使用局部和全局解释识别负责模型自适应的训练样例和潜在因果变量。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Defending Evasion Attacks via Adversarially Adaptive Training
通过对抗性自适应训练防御规避攻击
- DOI:10.1109/bigdata55660.2022.10020474
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Van, Minh-Hao;Du, Wei;Wu, Xintao;Chen, Feng;Lu, Aidong
- 通讯作者:Lu, Aidong
SCM-VAE: Learning Identifiable Causal Representations via Structural Knowledge
- DOI:10.1109/bigdata55660.2022.10021114
- 发表时间:2022-12
- 期刊:
- 影响因子:0
- 作者:Aneesh Komanduri;Yongkai Wu;Wen Huang;Feng Chen;Xintao Wu
- 通讯作者:Aneesh Komanduri;Yongkai Wu;Wen Huang;Feng Chen;Xintao Wu
Robust Personalized Federated Learning under Demographic Fairness Heterogeneity
- DOI:10.1109/bigdata55660.2022.10020554
- 发表时间:2022-12
- 期刊:
- 影响因子:0
- 作者:Alycia N. Carey;Wei Du;Xintao Wu
- 通讯作者:Alycia N. Carey;Wei Du;Xintao Wu
Towards Fair Disentangled Online Learning for Changing Environments
- DOI:10.1145/3580305.3599523
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Chenxu Zhao;Feng Mi;Xintao Wu;Kai Jiang;L. Khan;Christan Earl Grant;Feng Chen
- 通讯作者:Chenxu Zhao;Feng Mi;Xintao Wu;Kai Jiang;L. Khan;Christan Earl Grant;Feng Chen
Adaptive Fairness-Aware Online Meta-Learning for Changing Environments
- DOI:10.1145/3534678.3539420
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Chenxu Zhao;Feng Mi;Xintao Wu;Kai Jiang;L. Khan;Feng Chen
- 通讯作者:Chenxu Zhao;Feng Mi;Xintao Wu;Kai Jiang;L. Khan;Feng Chen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Feng Chen其他文献
In situ self-transformation synthesis of g-C3N4-modified CdS heterostructure with enhanced photocatalytic activity
原位自转化合成具有增强光催化活性的g-C3N4修饰的CdS异质结构
- DOI:
10.1016/j.apsusc.2015.06.074 - 发表时间:
2015-12 - 期刊:
- 影响因子:6.7
- 作者:
Huogen Yu;Fengyun Chen;Feng Chen;Xuefei Wang - 通讯作者:
Xuefei Wang
Determination of iodine in seawater: methods and applications
海水中碘的测定:方法和应用
- DOI:
10.1016/b978-0-12-374135-6.00001-7 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Huabin Li;Xiangrong Xu;Feng Chen - 通讯作者:
Feng Chen
A preliminary investigation of metal element profiles in the serum of patients with bloodstream infections using inductively-coupled plasma mass spectrometry (ICP-MS)
使用电感耦合等离子体质谱 (ICP-MS) 对血流感染患者血清中金属元素谱进行初步研究
- DOI:
10.1016/j.cca.2018.07.013 - 发表时间:
2018 - 期刊:
- 影响因子:5
- 作者:
Suying Zhao;Shuyuan Cao;Lan Luo;Zhan Zhang;Gehui Yuan;Yanan Zhang;Yanting Yang;Weihui Guo;Li Wang;Feng Chen;Qian Wu;Lei Li - 通讯作者:
Lei Li
Development and Validation of a Novel Predictive Model for the Early Differentiation of Cardiac and Non-Cardiac Syncope
心源性晕厥和非心源性晕厥早期区分的新型预测模型的开发和验证
- DOI:
10.2147/ijgm.s454521 - 发表时间:
2024 - 期刊:
- 影响因子:2.3
- 作者:
Sijin Wu;Zhongli Chen;Yuan Gao;S. Shu;Feng Chen;Ying Wu;Yan Dai;Shu Zhang;Keping Chen - 通讯作者:
Keping Chen
Training of Multi-class Linear Classifier with BFGS Method
用BFGS方法训练多类线性分类器
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Xiaobo Jin;Junwei Yu;Feng Chen;Pengfei Zhu - 通讯作者:
Pengfei Zhu
Feng Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Feng Chen', 18)}}的其他基金
ATD: Sparse and Localized Graph Convolutional Networks for Anomaly Detection and Active Learning
ATD:用于异常检测和主动学习的稀疏和局部图卷积网络
- 批准号:
2220574 - 财政年份:2023
- 资助金额:
$ 39.3万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Hardware and Software Support for Memory-Centric Computing Systems
协作研究:SHF:中:以内存为中心的计算系统的硬件和软件支持
- 批准号:
2312509 - 财政年份:2023
- 资助金额:
$ 39.3万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: A New Direction of Research and Development to Fulfill the Promise of Computational Storage
合作研究:SHF:Medium:实现计算存储承诺的研发新方向
- 批准号:
2210755 - 财政年份:2022
- 资助金额:
$ 39.3万 - 项目类别:
Continuing Grant
III: Medium: Collaborative Research: MUDL: Multidimensional Uncertainty-Aware Deep Learning Framework
III:媒介:协作研究:MUDL:多维不确定性感知深度学习框架
- 批准号:
2107449 - 财政年份:2021
- 资助金额:
$ 39.3万 - 项目类别:
Continuing Grant
III: Small: Collaborative Research: A novel paradigm for detecting complex anomalous patterns in multi-modal, heterogeneous, and high-dimensional multi-source data sets
III:小型:协作研究:一种检测多模态、异构和高维多源数据集中复杂异常模式的新范式
- 批准号:
1954409 - 财政年份:2019
- 资助金额:
$ 39.3万 - 项目类别:
Standard Grant
CAREER: SPARK: A Theoretical Framework for Discovering Complex Patterns in Big Attributed Networks
职业:SPARK:发现大属性网络中复杂模式的理论框架
- 批准号:
1954376 - 财政年份:2019
- 资助金额:
$ 39.3万 - 项目类别:
Continuing Grant
SHF: Small: Redesigning the System Architecture for Ultra-High Density Data Storage
SHF:小型:重新设计超高密度数据存储的系统架构
- 批准号:
1910958 - 财政年份:2019
- 资助金额:
$ 39.3万 - 项目类别:
Standard Grant
CAREER: SPARK: A Theoretical Framework for Discovering Complex Patterns in Big Attributed Networks
职业:SPARK:发现大属性网络中复杂模式的理论框架
- 批准号:
1750911 - 财政年份:2018
- 资助金额:
$ 39.3万 - 项目类别:
Continuing Grant
III: Small: Collaborative Research: A novel paradigm for detecting complex anomalous patterns in multi-modal, heterogeneous, and high-dimensional multi-source data sets
III:小型:协作研究:一种检测多模态、异构和高维多源数据集中复杂异常模式的新范式
- 批准号:
1815696 - 财政年份:2018
- 资助金额:
$ 39.3万 - 项目类别:
Standard Grant
XPS: FULL: Collaborative Research: Maximizing the Performance Potential and Reliability of Flash-based Solid State Devices for Future Storage Systems
XPS:完整:协作研究:最大限度地提高未来存储系统基于闪存的固态设备的性能潜力和可靠性
- 批准号:
1629291 - 财政年份:2016
- 资助金额:
$ 39.3万 - 项目类别:
Standard Grant
相似国自然基金
Novel-miR-1134调控LHCGR的表达介导拟
穴青蟹卵巢发育的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
novel-miR75靶向OPR2,CA2和STK基因调控人参真菌胁迫响应的分子机制研究
- 批准号:82304677
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
- 批准号:82304658
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
novel_circ_001042/miR-298-5p/Capn1轴调节线粒体能量代谢在先天性肛门直肠畸形发生中的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
novel_circ_008138/rno-miR-374-3p/SFRP4调控Wnt信号通路参与先天性肛门直肠畸形发生的分子机制研究
- 批准号:82070530
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
miRNA-novel-272通过靶向半乳糖凝集素3调控牙鲆肠道上皮细胞炎症反应的机制研究
- 批准号:32002421
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
m6A修饰介导的lncRNA WEE2-AS1转录后novel-pri-miRNA剪切机制在胶质瘤恶性进展中的作用研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
miRNA/novel_167靶向抑制Dmrt1的表达在红鳍东方鲀性别分化过程中的功能研究
- 批准号:31902347
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The Structure and Function of Ipsilateral Corticospinal Projections
同侧皮质脊髓投射的结构和功能
- 批准号:
10678301 - 财政年份:2023
- 资助金额:
$ 39.3万 - 项目类别:
A Paradigm Shift in Health Behavior Change: Understanding When and How Social Comparison Supports Healthy Behavior
健康行为改变的范式转变:了解社会比较何时以及如何支持健康行为
- 批准号:
10685733 - 财政年份:2023
- 资助金额:
$ 39.3万 - 项目类别:
Role of serotonin brain circuit in the developmental emergence ofinnate fear
血清素脑回路在先天恐惧的发展中的作用
- 批准号:
10664638 - 财政年份:2023
- 资助金额:
$ 39.3万 - 项目类别:
Molecular and functional architecture of a premotor circuit for decision making
用于决策的前运动电路的分子和功能架构
- 批准号:
10651389 - 财政年份:2023
- 资助金额:
$ 39.3万 - 项目类别:
Defining the neural basis for persistent obesity
定义持续性肥胖的神经基础
- 批准号:
10735128 - 财政年份:2023
- 资助金额:
$ 39.3万 - 项目类别:
Does social motivation in adolescence differentially predict the impact of childhood threat exposure on developing suicidal thoughts and behaviors
青春期的社会动机是否可以差异预测童年威胁暴露对自杀想法和行为的影响
- 批准号:
10785373 - 财政年份:2023
- 资助金额:
$ 39.3万 - 项目类别:
The role of cerebellar output in the control of motor coordination
小脑输出在运动协调控制中的作用
- 批准号:
10601599 - 财政年份:2023
- 资助金额:
$ 39.3万 - 项目类别:
Dissecting Behavioral and Neural Mechanisms of Hand Dexterity after Stroke for Effective Rehabilitation
剖析中风后手部灵活性的行为和神经机制,以实现有效康复
- 批准号:
10803644 - 财政年份:2023
- 资助金额:
$ 39.3万 - 项目类别:
Cortical Circuits Underlying Functional Recovery Following Stroke
中风后功能恢复的皮层回路
- 批准号:
10638607 - 财政年份:2023
- 资助金额:
$ 39.3万 - 项目类别:
Task Representations in Ventral Tegmental Area Dopamine Neurons across Shifts in Behavioral Strategy and Reward Expectation
腹侧被盖区多巴胺神经元的任务表征跨越行为策略和奖励期望的转变
- 批准号:
10679825 - 财政年份:2023
- 资助金额:
$ 39.3万 - 项目类别: