III: Medium: Collaborative Research: Extracting and Linking AI Artifacts

III:媒介:协作研究:提取和链接人工智能工件

基本信息

  • 批准号:
    2107518
  • 负责人:
  • 金额:
    $ 53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-12-01 至 2024-11-30
  • 项目状态:
    已结题

项目摘要

The goal of this project is to create a framework for linking all salient aspects of an AI workflow, including data, AI model, AI tool, task, and training methodology. The investigators seek to create a framework that takes a holistic view of the AI workflow, and thus, will provide a solution to one of the three key problems identified in the Report of the Office of Science Roundtable on Data for AI: “Address open questions in AI with frameworks for relating data, models, and tasks.” One of the key provisions of federal funding agencies is the creation and open dissemination of research artifacts (e.g., data, models). Although publication-based knowledge is easily reused, data and models are not. Data are the key ingredients to generate AI models. However, the relation between an AI model and the data used to generate it or the task it solves, and the data on which the AI model is tested on, is captured by neither the model nor the data or task. Thus, the investigators seek to create a unified approach to construct this relationship and annotate it. This project will contribute to the broad field of information retrieval and, in particular, to the field of named entity recognition. In this project, the named entities are the datasets, AI models, developing tools, and the names of various methods, such as those employed in training. The investigators will employ a holistic approach to the management of AI research artifacts, i.e., paper-task-data-model-tool, which in turn will produce an innovative way to conceptualize and execute data-AI model search and aggregation. The technical innovation of this project is the creation of novel techniques for entity and relation extraction as well as for entity linking. The project will also contribute to the field of scientific literature mining. The investigators will create novel technology to automatically identify and catalog public AI data and models that increase their reusability. The key insight is that, without the research papers themselves, the research AI artifacts lack the necessary context for reuse. For example, papers describe the role of a dataset (e.g., training or testing) and tell if a model is original or used as a baseline. By automatically inferring task-data-model relations, this project will increase the ability of suggesting artifacts to a new undertaking, thus shortening the time for relevant artifact search. Educationally, this work will involve training of graduate and undergraduate students, particularly encouraging the participation of women and underrepresented groups in the research efforts, and curriculum development.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目的目标是创建一个框架,用于将人工智能工作流程的所有重要方面联系起来,包括数据、人工智能模型、人工智能工具、任务和培训方法。研究人员寻求创建一个从整体上看待人工智能工作流程的框架,因此,将为科学办公室人工智能数据圆桌会议报告中确定的三个关键问题之一提供解决方案:“用关联数据、模型和任务的框架解决人工智能中的公开问题。”联邦资助机构的关键条款之一是创建和公开传播研究成果(例如数据、模型)。尽管基于出版物的知识很容易重复使用,但数据和模型却并非如此。数据是生成人工智能模型的关键因素。然而,AI模型与用于生成它或它所解决的任务的数据之间的关系,以及测试AI模型所基于的数据,既不被模型捕获,也不被数据或任务捕获。因此,研究人员试图创建一种统一的方法来构建这种关系并对其进行注释。该项目将有助于广泛的信息检索领域,特别是命名实体识别领域。在这个项目中,命名的实体是数据集、人工智能模型、开发工具和各种方法的名称,例如训练中使用的方法。调查人员将采用一种全面的方法来管理人工智能研究成果,即纸张-任务-数据模型-工具,这反过来将产生一种创新的方式来概念化和执行数据-人工智能模型搜索和聚合。该项目的技术创新是创造了用于实体和关系提取以及实体链接的新技术。该项目还将为科学文献挖掘领域做出贡献。调查人员将创造新的技术来自动识别和编目公共人工智能数据和模型,以提高其可重用性。关键的见解是,如果没有研究论文本身,研究人工智能制品就缺乏必要的重用上下文。例如,论文描述了数据集的作用(例如,训练或测试),并指出模型是原始的还是用作基准。通过自动推断任务-数据-模型关系,该项目将增加向新任务建议文物的能力,从而缩短相关文物搜索的时间。在教育方面,这项工作将包括对研究生和本科生的培训,特别是鼓励女性和代表性不足的群体参与研究工作和课程开发。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Sloan其他文献

ASO Author Reflections: Patients’ Satisfaction After Breast Conserving Surgery Using the Suture Scaffold Technique
  • DOI:
    10.1245/s10434-022-11513-4
  • 发表时间:
    2022-03-09
  • 期刊:
  • 影响因子:
    3.500
  • 作者:
    Reiko Mitsueda;Anri Gen;Yoshitaka Fujiki;Naomi Gondo;Mutsumi Sato;Junko Kawano;Kouichi Kuninaka;Shuichi Kanemitsu;Megumi Teraoka;Yoshito Matsuyama;Shinichi Baba;Sugako Nomoto;Robert Sloan;Yoshiaki Rai;Yoshiaki Sagara;Yasuaki Sagara
  • 通讯作者:
    Yasuaki Sagara
Satisfaction of Patients Who Received Breast-Conserving Surgery Using the Suture Scaffold Technique: A Single-Institution, Cross-Sectional Study
使用缝合支架技术接受保乳手术的患者的满意度:一项单机构横断面研究
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Reiko Mitsueda;A. Gen;Yoshitaka Fujiki;Naomi Gondo;Mutsumi Sato;J. Kawano;K. Kuninaka;Shuichi Kanemitsu;Megumi Teraoka;Y. Matsuyama;S. Baba;S. Nomoto;Robert Sloan;Y. Rai;Y. Sagara;Y. Sagara
  • 通讯作者:
    Y. Sagara
ASO Visual Abstract: Satisfaction of Patients Who Received Breast-Conserving Surgery Using the Suture Scaffold Technique: A Single-Institution, Cross-Sectional Study
  • DOI:
    10.1245/s10434-022-11554-9
  • 发表时间:
    2022-03-19
  • 期刊:
  • 影响因子:
    3.500
  • 作者:
    Reiko Mitsueda;Anri Gen;Yoshitaka Fujiki;Naomi Gondo;Mutsumi Sato;Junko Kawano;Koichi Kuninaka;Shuichi Kanemitsu;Megumi Teraoka;Yoshito Matsuyama;Shinichi Baba;Sugako Nomoto;Robert Sloan;Yoshiaki Rai;Yoshiaki Sagara;Yasuaki Sagara
  • 通讯作者:
    Yasuaki Sagara

Robert Sloan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Sloan', 18)}}的其他基金

Collaborative Research: HCC: Medium: Fine-grained Emotion Analysis in Crises
合作研究:HCC:中:危机中的细粒度情绪分析
  • 批准号:
    2107487
  • 财政年份:
    2021
  • 资助金额:
    $ 53万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Domain Adaptation Approaches for Classifying Crisis Related Data on Social Media
大数据:IA:协作研究:社交媒体上危机相关数据分类的领域适应方法
  • 批准号:
    1912887
  • 财政年份:
    2018
  • 资助金额:
    $ 53万
  • 项目类别:
    Standard Grant
CAREER: From Data to Knowledge: Extracting and Utilizing Concept Graphs in Online Environments
职业:从数据到知识:在线环境中提取和利用概念图
  • 批准号:
    1914575
  • 财政年份:
    2018
  • 资助金额:
    $ 53万
  • 项目类别:
    Continuing Grant
Designing and Evaluating a CS + Law Introduction to Computer Science
设计和评估计算机科学法计算机科学概论
  • 批准号:
    1612455
  • 财政年份:
    2016
  • 资助金额:
    $ 53万
  • 项目类别:
    Standard Grant
Diversifying CS with a Biology-themed Introductory CS Course at a Large, Diverse Public University
在大型、多元化的公立大学开设以生物学为主题的计算机科学入门课程,使计算机科学多样化
  • 批准号:
    1612113
  • 财政年份:
    2016
  • 资助金额:
    $ 53万
  • 项目类别:
    Standard Grant
EAGER: Privacy with Respect to Private Corporations in the 21st Century: Legal and Computer Security Issues
EAGER:21 世纪私营公司的隐私:法律和计算机安全问题
  • 批准号:
    0959116
  • 财政年份:
    2009
  • 资助金额:
    $ 53万
  • 项目类别:
    Continuing Grant
CS Scholars
计算机科学学者
  • 批准号:
    0850213
  • 财政年份:
    2009
  • 资助金额:
    $ 53万
  • 项目类别:
    Continuing Grant
Doctoral Consortium Support for International Conference on Automated Planning and Scheduling
博士联盟支持自动化规划与调度国际会议
  • 批准号:
    0836896
  • 财政年份:
    2008
  • 资助金额:
    $ 53万
  • 项目类别:
    Standard Grant
Complexity Aspects of Knowledge Representation and Learning
知识表示和学习的复杂性
  • 批准号:
    0431059
  • 财政年份:
    2004
  • 资助金额:
    $ 53万
  • 项目类别:
    Continuing Grant
A Multimedia Introduction to Computer Science: Two Courses from One
计算机科学多媒体简介:合二为一的课程
  • 批准号:
    0411219
  • 财政年份:
    2004
  • 资助金额:
    $ 53万
  • 项目类别:
    Standard Grant

相似海外基金

III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
  • 批准号:
    2420691
  • 财政年份:
    2024
  • 资助金额:
    $ 53万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
  • 批准号:
    2312865
  • 财政年份:
    2023
  • 资助金额:
    $ 53万
  • 项目类别:
    Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
  • 批准号:
    2312932
  • 财政年份:
    2023
  • 资助金额:
    $ 53万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
  • 批准号:
    2348169
  • 财政年份:
    2023
  • 资助金额:
    $ 53万
  • 项目类别:
    Continuing Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2415562
  • 财政年份:
    2023
  • 资助金额:
    $ 53万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
  • 批准号:
    2347592
  • 财政年份:
    2023
  • 资助金额:
    $ 53万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Knowledge discovery from highly heterogeneous, sparse and private data in biomedical informatics
合作研究:III:中:生物医学信息学中高度异构、稀疏和私有数据的知识发现
  • 批准号:
    2312862
  • 财政年份:
    2023
  • 资助金额:
    $ 53万
  • 项目类别:
    Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
  • 批准号:
    2312930
  • 财政年份:
    2023
  • 资助金额:
    $ 53万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
  • 批准号:
    2312501
  • 财政年份:
    2023
  • 资助金额:
    $ 53万
  • 项目类别:
    Standard Grant
Collaborative Research: IIS: III: MEDIUM: Learning Protein-ish: Foundational Insight on Protein Language Models for Better Understanding, Democratized Access, and Discovery
协作研究:IIS:III:中等:学习蛋白质:对蛋白质语言模型的基础洞察,以更好地理解、民主化访问和发现
  • 批准号:
    2310113
  • 财政年份:
    2023
  • 资助金额:
    $ 53万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了