Collaborative Research: HCC: Medium: Fine-grained Emotion Analysis in Crises
合作研究:HCC:中:危机中的细粒度情绪分析
基本信息
- 批准号:2107487
- 负责人:
- 金额:$ 34.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
History is rich with situations where the same event has been interpreted completely differently by different groups of people. Through events such as the OJ Simpson case, the COVID-19 crisis, and the murder of George Floyd, we have observed disparate reactions to events that community leaders, police departments, policymakers, and everyday citizens fail to anticipate. The purpose of this project is to begin to identify social, emotional, and linguistic markers of crises (e.g., social turmoil, natural disasters, etc.) that predict the various ways people will react to the same events. This is achieved by analyzing the language of social media, a rapidly-growing source of data from which we can understand the expression and perception of emotions at a very large scale, with far-reaching potential uses from academic research to public policy.Understanding emotions, the context surrounding these emotions, and subsequent behaviors are of great value to those in a crisis, seeking information about a crisis, or helping manage responses to a crisis. This project will discover mechanisms to provide comprehensive, fine-grained emotion analysis across different social platforms, and derive robust and reliable predictive models. Fine-grained emotion analysis aims to: (1) detect expressions of emotions in a text and characterize their intensity and polarity, (2) identify the triggers causing the emotions, and (3) analyze emotion deviation (i.e., the varied emotions that people express towards the same trigger). This research will contribute annotated datasets of emotions expressed on social media across distinct crises and generalizable models equipped with deep linguistic understanding for contextualized emotion analysis. Industry and academic partners will participate by evaluating the ability of the models to work on situations and data sources different from those used to develop the models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
历史丰富的情况充满了不同的事件的解释,不同的人群完全不同。通过诸如OJ Simpson案,Covid-19危机以及乔治·弗洛伊德(George Floyd)的谋杀之类的事件,我们观察到对社区领导人,警察部门,政策制定者和日常公民未能预料到的事件的反应不同。该项目的目的是开始确定危机的社会,情感和语言标志(例如,社会动荡,自然灾害等),以预测人们对同一事件的各种方式。这是通过分析社交媒体的语言来实现的,社交媒体的语言是一种快速增长的数据来源,我们可以从中了解到情绪的表达和感知,从学术研究到公共政策,具有深远的潜在用途。理解情感,围绕这些情绪的环境,以及随后的行为对危机的人来说是极大的价值,可以使人们对危机进行crisis的响应,从而响应crisis crisis,以响应一个响应。该项目将发现机制,以在不同的社交平台上提供全面,细粒度的情绪分析,并得出强大而可靠的预测模型。细粒度的情绪分析的目的是:(1)检测文本中情绪的表达并表征其强度和极性,(2)确定引起情绪的触发因素,(3)分析情绪偏差(即人们向同一触发器表达的各种情绪)。这项研究将贡献在社交媒体上围绕不同的危机和具有深厚语言理解的可推广模型在社交媒体上表达的注释数据集,以进行情境分析。 行业和学术合作伙伴将通过评估模型在与开发模型的情况不同的情况和数据源的能力来参与。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛影响的评估来评估的评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Sloan其他文献
Satisfaction of Patients Who Received Breast-Conserving Surgery Using the Suture Scaffold Technique: A Single-Institution, Cross-Sectional Study
使用缝合支架技术接受保乳手术的患者的满意度:一项单机构横断面研究
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:3.7
- 作者:
Reiko Mitsueda;A. Gen;Yoshitaka Fujiki;Naomi Gondo;Mutsumi Sato;J. Kawano;K. Kuninaka;Shuichi Kanemitsu;Megumi Teraoka;Y. Matsuyama;S. Baba;S. Nomoto;Robert Sloan;Y. Rai;Y. Sagara;Y. Sagara - 通讯作者:
Y. Sagara
Robert Sloan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Sloan', 18)}}的其他基金
III: Medium: Collaborative Research: Extracting and Linking AI Artifacts
III:媒介:协作研究:提取和链接人工智能工件
- 批准号:
2107518 - 财政年份:2021
- 资助金额:
$ 34.76万 - 项目类别:
Continuing Grant
BIGDATA: IA: Collaborative Research: Domain Adaptation Approaches for Classifying Crisis Related Data on Social Media
大数据:IA:协作研究:社交媒体上危机相关数据分类的领域适应方法
- 批准号:
1912887 - 财政年份:2018
- 资助金额:
$ 34.76万 - 项目类别:
Standard Grant
CAREER: From Data to Knowledge: Extracting and Utilizing Concept Graphs in Online Environments
职业:从数据到知识:在线环境中提取和利用概念图
- 批准号:
1914575 - 财政年份:2018
- 资助金额:
$ 34.76万 - 项目类别:
Continuing Grant
Designing and Evaluating a CS + Law Introduction to Computer Science
设计和评估计算机科学法计算机科学概论
- 批准号:
1612455 - 财政年份:2016
- 资助金额:
$ 34.76万 - 项目类别:
Standard Grant
Diversifying CS with a Biology-themed Introductory CS Course at a Large, Diverse Public University
在大型、多元化的公立大学开设以生物学为主题的计算机科学入门课程,使计算机科学多样化
- 批准号:
1612113 - 财政年份:2016
- 资助金额:
$ 34.76万 - 项目类别:
Standard Grant
EAGER: Privacy with Respect to Private Corporations in the 21st Century: Legal and Computer Security Issues
EAGER:21 世纪私营公司的隐私:法律和计算机安全问题
- 批准号:
0959116 - 财政年份:2009
- 资助金额:
$ 34.76万 - 项目类别:
Continuing Grant
Doctoral Consortium Support for International Conference on Automated Planning and Scheduling
博士联盟支持自动化规划与调度国际会议
- 批准号:
0836896 - 财政年份:2008
- 资助金额:
$ 34.76万 - 项目类别:
Standard Grant
Complexity Aspects of Knowledge Representation and Learning
知识表示和学习的复杂性
- 批准号:
0431059 - 财政年份:2004
- 资助金额:
$ 34.76万 - 项目类别:
Continuing Grant
A Multimedia Introduction to Computer Science: Two Courses from One
计算机科学多媒体简介:合二为一的课程
- 批准号:
0411219 - 财政年份:2004
- 资助金额:
$ 34.76万 - 项目类别:
Standard Grant
相似国自然基金
iRGD偶联纳米载体双靶向ITGA5/NRP-1抑制HCC侵袭及细胞空间互作机制的研究
- 批准号:82360569
- 批准年份:2023
- 资助金额:32.00 万元
- 项目类别:地区科学基金项目
90Y联合Flt3L作为原位疫苗联合ICIs治疗HBV相关HCC机制研究
- 批准号:82372067
- 批准年份:2023
- 资助金额:55 万元
- 项目类别:面上项目
tRNAMet通过调控富含AUG密码子基因的蛋白翻译促进HCC发展的机制研究
- 批准号:82373963
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
ACSM3通过增加线粒体代谢通路抵抗NAFLD-HCC进展的机制研究
- 批准号:82303234
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
靶向肿瘤anti-miRNAs上调JAK1/STAT1通路提高HCC对联合免疫治疗敏感的机制研究
- 批准号:82373257
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: HCC: Medium: Aligning Robot Representations with Humans
合作研究:HCC:媒介:使机器人表示与人类保持一致
- 批准号:
2310757 - 财政年份:2023
- 资助金额:
$ 34.76万 - 项目类别:
Standard Grant
Collaborative Research: HCC: Small: End-User Guided Search and Optimization for Accessible Product Customization and Design
协作研究:HCC:小型:最终用户引导的搜索和优化,以实现无障碍产品定制和设计
- 批准号:
2327136 - 财政年份:2023
- 资助金额:
$ 34.76万 - 项目类别:
Standard Grant
Collaborative Research: HCC: Small: Bridging Research and Visualization Design Practice via a Sustainable Knowledge Platform
合作研究:HCC:小型:通过可持续知识平台桥接研究和可视化设计实践
- 批准号:
2147044 - 财政年份:2023
- 资助金额:
$ 34.76万 - 项目类别:
Standard Grant
Collaborative Research: HCC: Small: Computational Design and Application of Wearable Haptic Knits
合作研究:HCC:小型:可穿戴触觉针织物的计算设计与应用
- 批准号:
2301355 - 财政年份:2023
- 资助金额:
$ 34.76万 - 项目类别:
Standard Grant
Collaborative Research: NSF-CSIRO: HCC: Small: Understanding Bias in AI Models for the Prediction of Infectious Disease Spread
合作研究:NSF-CSIRO:HCC:小型:了解预测传染病传播的 AI 模型中的偏差
- 批准号:
2302969 - 财政年份:2023
- 资助金额:
$ 34.76万 - 项目类别:
Standard Grant