Collaborative Research: AF: Medium: Algorithmic High-Dimensional Robust Statistics

合作研究:AF:中:算法高维稳健统计

基本信息

  • 批准号:
    2107547
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

The broad task of making accurate inferences from high-dimensional and contaminated datasets is of fundamental importance and has become a key challenge in a number of pressing data-analysis applications. These include (1) data-poisoning attacks in machine learning (ML), where even a small fraction of adversarial data inserted by malicious users can substantially degrade the quality of the ML system, and (2) exploratory analysis of scientific datasets (e.g., in biology), where systematic errors can create structured corruptions that require painstaking effort to detect. To address these challenges, there is a real need to develop efficient robust learning algorithms -- methods whose performance is stable to deviations from the idealized assumptions about the input data. The precise form of these deviations is problem-specific and gives rise to various notions of robustness. The overarching goal of this project is to develop a general algorithmic theory of high-dimensional robust statistics and learning. A crucial component of the project involves building bridges between different communities, by organizing interdisciplinary workshops, and writing a new graduate textbook on the topic. Moreover, the investigators are mentoring undergraduate students and design new data-centric courses integrating research and teaching.The technical core of this project consists of two interrelated thrusts: (1) List-Decodable Learning and Mixture Models: The majority of recent literature in algorithmic high-dimensional robust learning focuses on the setting where the clean data is the majority of the dataset. List-decodable learning is a relaxed notion of learning capturing the regime where the clean data is a minority of the input dataset, and can be used to model important data-science applications, such as crowdsourcing with a majority of unreliable respondents and learning-mixture models. The project is developing a unified theory with the goal of uncovering which distributional parameters can be efficiently list-decoded, and leveraging this theory to understand the complexity of learning mixture models. (2) Robust Supervised Learning of Geometric Concepts: The goal of supervised learning is to infer a function from a collection of labeled observations. Supervised learning has traditionally been concerned with the problem of generalizing from a set of correctly labeled examples. In many realistic scenarios, a fraction of the points and/or labels may be corrupted by noise, e.g., due to sensor errors or adversarial data poisoning. Hence, it is important to develop efficient algorithms that produce accurate predictors under these conditions. The project is developing efficient robust learning algorithms for rich families of geometric concepts with respect to natural and well-studied semi-random noise models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
从高维和污染数据集进行准确推断的广泛任务具有根本的重要性,并且已经成为许多紧迫的数据分析应用中的关键挑战。这些包括(1)机器学习(ML)中的数据中毒攻击,其中即使是恶意用户插入的一小部分对抗性数据也会大大降低ML系统的质量,以及(2)科学数据集的探索性分析(例如,在生物学中),系统性错误会造成结构性腐败,需要付出艰苦的努力才能发现。为了应对这些挑战,有一个真实的需要开发有效的鲁棒学习算法-方法的性能是稳定的偏离理想化的假设输入数据。这些偏差的精确形式是特定于问题的,并产生了各种鲁棒性概念。这个项目的首要目标是开发一个高维鲁棒统计和学习的通用算法理论。该项目的一个重要组成部分是通过组织跨学科讲习班在不同社区之间建立桥梁,并编写一本关于这一主题的新的研究生教科书。该项目的技术核心由两个相互关联的主题组成:(1)列表解码学习和混合模型:最近的大多数算法高维鲁棒学习的文献都集中在干净数据是数据集的大部分的设置。列表可解码学习是一种宽松的学习概念,它捕获了干净数据是输入数据集的少数的情况,并且可以用于建模重要的数据科学应用,例如大多数不可靠的受访者和学习混合模型的众包。 该项目正在开发一种统一的理论,其目标是揭示哪些分布参数可以有效地进行列表解码,并利用该理论来理解学习混合模型的复杂性。(2)几何概念的鲁棒监督学习:监督学习的目标是从标记的观察集合中推断函数。传统上,监督学习关注的是从一组正确标记的示例中泛化的问题。在许多现实场景中,一部分点和/或标签可能被噪声破坏,例如,由于传感器错误或对抗性数据中毒。因此,重要的是开发有效的算法,在这些条件下产生准确的预测。该项目正在为自然和经过充分研究的半随机噪声模型的丰富几何概念家族开发高效的鲁棒学习算法。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Strongly Polynomial Algorithm for Approximate Forster Transforms and Its Application to Halfspace Learning
一种近似福斯特变换的强多项式算法及其在半空间学习中的应用
Statistical Query Lower Bounds for List-Decodable Linear Regression
  • DOI:
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ilias Diakonikolas;D. Kane;Ankit Pensia;Thanasis Pittas;Alistair Stewart
  • 通讯作者:
    Ilias Diakonikolas;D. Kane;Ankit Pensia;Thanasis Pittas;Alistair Stewart
Hardness of Learning a Single Neuron with Adversarial Label Noise
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ilias Diakonikolas;D. Kane;Pasin Manurangsi;Lisheng Ren
  • 通讯作者:
    Ilias Diakonikolas;D. Kane;Pasin Manurangsi;Lisheng Ren
Cryptographic Hardness of Learning Halfspaces with Massart Noise
使用 Massart 噪声学习半空间的密码学硬度
Forster Decomposition and Learning Halfspaces with Noise
  • DOI:
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ilias Diakonikolas;D. Kane;Christos Tzamos
  • 通讯作者:
    Ilias Diakonikolas;D. Kane;Christos Tzamos
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Kane其他文献

1184: Do physician working hours affect cesarean section rates in low risk women?
  • DOI:
    10.1016/j.ajog.2019.11.1196
  • 发表时间:
    2020-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Daniel Kane;Ita Shanahan;Patrick Dicker;Fergal D. Malone;Michael P. Geary;Etaoin Kent;Naomi Burke
  • 通讯作者:
    Naomi Burke
A Short Implicant of a CNF Formula with Many Satisfying Assignments
  • DOI:
    10.1007/s00453-016-0125-z
  • 发表时间:
    2016-02-01
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Daniel Kane;Osamu Watanabe
  • 通讯作者:
    Osamu Watanabe
Sexual violence associated with international travel: a review of 443 cases
  • DOI:
    10.1007/s00414-024-03388-9
  • 发表时间:
    2024-12-14
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Daniel Kane;Andrea Holmes;Kieran Kennedy;Karen Flood;Maeve Eogan
  • 通讯作者:
    Maeve Eogan
Collection and storage of forensic evidence to enable subsequent reporting of a sexual crime to the police “Option 3”—an Irish experience
  • DOI:
    10.1007/s11845-020-02491-1
  • 发表时间:
    2021-01-13
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Daniel Kane;Christine Pucillo;Nicola Maher;Maeve Eogan
  • 通讯作者:
    Maeve Eogan
Effects of different heat and light sources on the behaviour of captive reptiles
不同热源和光源对圈养爬行动物行为的影响
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel Kane;Hailey Stapleton;Thomas Griffiths;Christopher J. Michaels
  • 通讯作者:
    Christopher J. Michaels

Daniel Kane的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Kane', 18)}}的其他基金

CAREER: Structure and Analysis of Low Degree Polynomials
职业:低次多项式的结构和分析
  • 批准号:
    1553288
  • 财政年份:
    2016
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
SBIR Phase I: Quantitative Space-time Control for High Contrast Multiphoton Microscopy
SBIR 第一阶段:高对比度多光子显微镜的定量时空控制
  • 批准号:
    1248772
  • 财政年份:
    2013
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1103688
  • 财政年份:
    2011
  • 资助金额:
    $ 60万
  • 项目类别:
    Fellowship Award
STTR Phase I: The Development of Quantum Dot Materials for Ultrafast Laser Applications
STTR 第一阶段:用于超快激光应用的量子点材料的开发
  • 批准号:
    0930697
  • 财政年份:
    2009
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
'Fragments, Blotches, Healing Lights': The Conversation Between Film and Poetry in the Post-War American Avant-Garde
“碎片、斑点、治愈之光”:战后美国前卫艺术中电影与诗歌的对话
  • 批准号:
    AH/D501288/1
  • 财政年份:
    2006
  • 资助金额:
    $ 60万
  • 项目类别:
    Research Grant
SBIR Phase I: Enhanced Spectral Interferometry for Biological Imaging
SBIR 第一阶段:用于生物成像的增强型光谱干涉测量
  • 批准号:
    0214911
  • 财政年份:
    2002
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
SBIR Phase I: Optical Pulse Measurement for Telecommunication Applications
SBIR 第一阶段:电信应用的光脉冲测量
  • 批准号:
    0215045
  • 财政年份:
    2002
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
SBIR Phase II: Novel Electric Field Probe for High-Speed Integrated Circuits and Semiconductor Devices
SBIR 第二阶段:用于高速集成电路和半导体器件的新型电场探针
  • 批准号:
    0091454
  • 财政年份:
    2001
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
SBIR Phase I: Novel Electric Field Probe for High-Speed Integrated Circuits and Semiconductor Devices
SBIR 第一阶段:用于高速集成电路和半导体器件的新型电场探针
  • 批准号:
    9960557
  • 财政年份:
    2000
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
SBIR Phase II: Real Time Spectrogram Inversion for Ultrashort Laser Pulse Measurement
SBIR 第二阶段:用于超短激光脉冲测量的实时频谱图反演
  • 批准号:
    9801116
  • 财政年份:
    1998
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402836
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
  • 批准号:
    2402851
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
  • 批准号:
    2342244
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
  • 批准号:
    2335411
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
  • 批准号:
    2420942
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
  • 批准号:
    2422926
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
  • 批准号:
    2347322
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Real Solutions of Polynomial Systems
合作研究:AF:小:多项式系统的实数解
  • 批准号:
    2331401
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
  • 批准号:
    2402283
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Small: New Connections between Optimization and Property Testing
合作研究:AF:小型:优化和性能测试之间的新联系
  • 批准号:
    2402572
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了