IRES Track I: Novel international student experiences in smart manufacturing and AI for industry 4.0

IRES Track I:国际学生在工业 4.0 智能制造和人工智能方面的新体验

基本信息

项目摘要

This project aims to establish an International Research Experience for Students Site focused on Smart Manufacturing and AI for Industry 4.0 at Aix en Provence, France. The U.S. Bureau of Labor Standards observes that Smart Manufacturing and Artificial Intelligence (AI) are among the chief knowledge gaps of the entering industrial workforce, and this skill gap can lead to $2.5 trillion economic output loss in the next decade. This gap may also impede key scientific discoveries and technological innovations necessary for realizing high-performance and sustainable industrial practice. This project contributes to addressing this critical gap to the nation’s economic sustainability by imparting diverse groups of US engineering students world-class research skills in smart manufacturing and AI through international cohort experiences. It would provide the entering knowledge workforce with hands-on skills in the state-of-the-art industry-scale machines and platforms. It would also instill the abilities to transcend cultural barriers and harness transatlantic resources to effectively deal with the emerging quality, sustainability, security, and productivity challenges of the industry. The project will also broaden professional networks, deepen relationships of a diverse student cohort with the industry, and introduce students to international practices in innovation and technology development. Taken together, the proposed research experiences will contribute to the development of a diverse, globally-engaged US workforce with world-class skills in the area of immense value to the nation’s economy.The project will be hosted at Arts et Métiers, the Grande Ecole of Technology at Aix en Provence, France. The project offers a seven weeks long research experience and internship program for a diverse cohort of students for three years, focusing on Smart Manufacturing and Artificial Intelligence (AI) for the emerging industrial era. The PI and the international host currently co-lead a transatlantic partnership between Texas A&M Engineering and Arts et Métiers, and have initiated research collaborations and a consortium with the industry in Europe focused on smart manufacturing and AI. As part of this partnership, a total of 75 study abroad students and one summer intern spent 8 weeks at Arts et Métiers as well as Henri Fabre Technocenter, a unique public-private partnership consortium established in the South France region. Leveraging these efforts, four broad project themes have been identified to provide world-class research internship experiences to students. Every project will require the student group to engage the industry partner (e.g., Airbus, Essilor, Sateco, Total) to advance the theory and methods of AI/data science to address a specific challenge in an emerging manufacturing platform (e.g., 3-D printing, rapid casting, sustainable machining). Besides providing hands-on experiences with unique industry-scale testbeds at the host location, the proposed project will feature a variety of innovative enrichment activities (e.g., Invent for the Planet) and interactions with the European industry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在为法国普罗旺斯地区艾克斯的学生建立一个国际研究体验网站,专注于工业4.0的智能制造和人工智能。美国劳工标准局指出,智能制造和人工智能(AI)是进入工业劳动力的主要知识差距之一,这种技能差距可能导致未来十年经济产出损失2.5万亿美元。这一差距还可能阻碍实现高绩效和可持续工业实践所需的关键科学发现和技术创新。 该项目有助于通过国际队列经验向不同群体的美国工程专业学生传授智能制造和人工智能方面的世界级研究技能,从而解决国家经济可持续性的这一关键差距。它将为进入知识型劳动力提供最先进的行业规模机器和平台的实践技能。它还将逐步灌输超越文化障碍和利用跨大西洋资源的能力,以有效应对该行业新出现的质量,可持续性,安全性和生产力挑战。该项目还将扩大专业网络,加深多元化学生群体与行业的关系,并向学生介绍创新和技术发展的国际实践。总的来说,拟议的研究经验将有助于发展一个多元化的,全球参与的美国劳动力与世界一流的技能,在该领域的巨大价值的国家的经济。该项目将主办艺术与Métiers,技术的大学校在普罗旺斯地区艾克斯,法国。 该项目为不同年龄段的学生提供为期七周的研究经验和实习计划,为期三年,专注于新兴工业时代的智能制造和人工智能(AI)。PI和国际主办方目前共同领导德克萨斯A M工程和Arts et Métiers之间的跨大西洋合作伙伴关系,并与欧洲的行业开展了研究合作和联盟,专注于智能制造和人工智能。作为这一合作的一部分,共有75名留学生和一名暑期实习生在Arts et Métiers以及Henri法布尔Technocenter度过了8周,这是一个在法国南部地区建立的独特的公私合作联盟。通过这些努力,确定了四个广泛的项目主题,为学生提供世界级的研究实习体验。每个项目都要求学生团体与行业合作伙伴(例如,Airbus、Essilor、Sateco、Total)推进人工智能/数据科学的理论和方法,以应对新兴制造平台中的特定挑战(例如,3D打印、快速铸造、可持续加工)。除了在主机位置提供独特的行业规模测试台的实践经验外,拟议项目还将采用各种创新的丰富活动(例如,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amarnath Banerjee其他文献

Heuristic/meta-heuristic methods for restricted bin packing problem
  • DOI:
    10.1007/s10732-020-09444-y
  • 发表时间:
    2020-03-30
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Yu Fu;Amarnath Banerjee
  • 通讯作者:
    Amarnath Banerjee
A self-configurable large-scale virtual manufacturing environment for collaborative designers
  • DOI:
    10.1007/s10055-009-0151-0
  • 发表时间:
    2010-01-08
  • 期刊:
  • 影响因子:
    5.000
  • 作者:
    Hyunsoo Lee;Amarnath Banerjee
  • 通讯作者:
    Amarnath Banerjee
Learning for Interval Prediction of Electricity Demand: A Cluster-based Bootstrapping Approach
电力需求区间预测的学习:基于集群的引导方法
  • DOI:
    10.48550/arxiv.2309.01336
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rohit Dube;Natarajan Gautam;Amarnath Banerjee;Harsha Nagarajan
  • 通讯作者:
    Harsha Nagarajan

Amarnath Banerjee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amarnath Banerjee', 18)}}的其他基金

COLLABORATIVE RESEARCH: ARWED - AUGMENTED PERCEPTION FOR UPPER-LIMB REHABILITATION
合作研究:ARWED - 上肢康复的增强感知
  • 批准号:
    1403502
  • 财政年份:
    2014
  • 资助金额:
    $ 29.83万
  • 项目类别:
    Standard Grant

相似海外基金

RII Track-4:NSF: Investigation of Stress Induced Birefringence and Refractive Index Changes in Glass for Fabricating Novel Optics
RII Track-4:NSF:用于制造新型光学器件的玻璃中应力引起的双折射和折射率变化的研究
  • 批准号:
    2327218
  • 财政年份:
    2024
  • 资助金额:
    $ 29.83万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track M: Enabling novel photonic neuromorphic devices through bridging DNA-programmable assembly and nanofabrication
NSF 融合加速器轨道 M:通过桥接 DNA 可编程组装和纳米制造实现新型光子神经形态设备
  • 批准号:
    2344415
  • 财政年份:
    2024
  • 资助金额:
    $ 29.83万
  • 项目类别:
    Standard Grant
Equipment: MRI: Track 2 Acquisition of a Novel Performance-Driven 3D Imaging System for Extremely Noisy Objects (NPIX)
设备: MRI:第 2 道采购新型性能驱动的 3D 成像系统,用于极噪物体 (NPIX)
  • 批准号:
    2319708
  • 财政年份:
    2023
  • 资助金额:
    $ 29.83万
  • 项目类别:
    Continuing Grant
GEO OSE Track 1: Enhancing the accessibility of novel geostatistical inversion workflows for cryosphere research
GEO OSE 轨道 1:增强冰冻圈研究的新型地质统计反演工作流程的可访问性
  • 批准号:
    2324092
  • 财政年份:
    2023
  • 资助金额:
    $ 29.83万
  • 项目类别:
    Standard Grant
Developing Novel Bayesian Track Before Detect Approaches for Maritime Big Data Challenges
在检测方法之前开发新颖的贝叶斯轨迹应对海事大数据挑战
  • 批准号:
    2889729
  • 财政年份:
    2023
  • 资助金额:
    $ 29.83万
  • 项目类别:
    Studentship
Equipment: MRI: Track 1 Acquisition of Cryogen-Free Magnetometer for Investigating Novel Magnetic/Superconducting Systems
设备:MRI:第 1 道采购无冷冻剂磁力计,用于研究新型磁/超导系统
  • 批准号:
    2318424
  • 财政年份:
    2023
  • 资助金额:
    $ 29.83万
  • 项目类别:
    Standard Grant
Development of a Novel mHealth Platform to Track Health Behaviors of Young Children with Down Syndrome
开发新型移动医疗平台来追踪患有唐氏综合症的幼儿的健康行为
  • 批准号:
    10569215
  • 财政年份:
    2023
  • 资助金额:
    $ 29.83万
  • 项目类别:
Developing and Determining Feasibility of a Novel Upper Extremity Robotic Exoskeleton to Track and Target Unwanted Joint Synergies during Repetitive Task Training in Stroke Survivors
开发并确定新型上肢机器人外骨骼的可行性,以跟踪和瞄准中风幸存者重复任务训练期间不需要的关节协同作用
  • 批准号:
    10805748
  • 财政年份:
    2023
  • 资助金额:
    $ 29.83万
  • 项目类别:
SCC-CIVIC-FA Track A: Novel Fuel-Flexible Combustion to Enable Ultra-Clean and Efficient Waste-to-Renewable Energy in Changing Climate
SCC-CIVIC-FA 轨道 A:新型燃料灵活燃烧,在不断变化的气候中实现超清洁、高效的废物转化为可再生能源
  • 批准号:
    2322319
  • 财政年份:
    2023
  • 资助金额:
    $ 29.83万
  • 项目类别:
    Standard Grant
SCC-CIVIC-PG Track A: Novel Fuel-Flexible Combustion to Enable Ultra-Clean and Efficient Waste-to-Renewable Energy in Changing Climate
SCC-CIVIC-PG 轨道 A:新型燃料灵活燃烧,在不断变化的气候中实现超清洁、高效的废物转化为可再生能源
  • 批准号:
    2228311
  • 财政年份:
    2022
  • 资助金额:
    $ 29.83万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了