Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains

合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益

基本信息

  • 批准号:
    2107613
  • 负责人:
  • 金额:
    $ 33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

The connectivity solutions need to scale up massively to support unprecedented exponential growth in data rates and the number of devices. The primary approach to meet the demands has been to upgrade the infrastructure, such as adding base stations with multiple antennas and/or upgrading clients. Unfortunately, these approaches have fallen short of their goal as in practice, the channels between users and base stations have limited scattering or richness to enable spatial multiplexing, and users are not sufficiently separated in the spatial domain. This proposal will shape the channel to unlock the full potential of wireless networks without requiring updating the base station or user device at a low cost in terms of power and expense. The proposed research aims to adaptively modify and morph the wireless medium using smart passive reflector surfaces to materialize the spatial multiplexing gains. The underlying idea is to use smart reflectors to create additional channel diversity to manipulate the received signal before reflecting it to minimize interference at the receivers. The research brings together PIs and techniques from communications theory, networked system design, and antenna design to build scalable and low-cost wireless networks. The project also proposes a synergistic educational and outreach plan that leverages the technical work to build exciting demos for undergraduate and K-12 classrooms. For example, a smart surface-based demo, which increases the data rate and coverage of current Wi-Fi devices, will introduce students to the wonders of engineering in a pragmatic yet compelling way, with the hope of increasing diversity in STEM-related education environments.The proposal would develop smart surface designs capable of morphing the channel, and develop the hardware prototype and algorithms to provide coverage and multiplexing gains to support massive numbers of users and the exponential increase in data rates. The designed smart surface with fine-grained control would allow us to morph the wireless channel or environment to increase the diversity and multiplexing gains as deemed necessary during optimization. We further establish smart surface placement theory and algorithms and quantify the performance-size trade-offs. We develop low-overhead channel estimation and low-latency optimization algorithms for the base station to support temporal channel changes and improve the data rate and connectivity. The proposed effort would develop the theory and algorithms for multi-user setups to ensure scalability with smart surfaces. The proposed work would enable the first low-cost, practical smart surface and algorithms supporting high-mobility users with significant data-rate improvements.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
连接解决方案需要大规模扩展,以支持数据速率和设备数量的前所未有的指数增长。满足需求的主要方法是升级基础设施,例如添加具有多个天线的基站和/或升级客户端。不幸的是,这些方法没有达到它们的目标,因为在实践中,用户和基站之间的信道具有有限的散射或丰富度以实现空间复用,并且用户在空间域中没有充分分离。该提案将塑造信道,以释放无线网络的全部潜力,而不需要在功率和费用方面以低成本更新基站或用户设备。建议的研究旨在自适应修改和变形的无线介质,使用智能无源反射器表面,实现空间复用增益。其基本思想是使用智能反射器来创建额外的信道分集,以在反射接收信号之前对其进行处理,从而最大限度地减少接收器处的干扰。该研究汇集了通信理论,网络系统设计和天线设计的PI和技术,以构建可扩展和低成本的无线网络。该项目还提出了一个协同教育和推广计划,利用技术工作为本科生和K-12教室建立令人兴奋的演示。例如,一个基于智能表面的演示,它增加了当前Wi-Fi设备的数据速率和覆盖范围,将以一种务实而引人注目的方式向学生介绍工程学的奇迹,希望增加STEM相关教育环境的多样性。该提案将开发能够变形通道的智能表面设计,并开发硬件原型和算法,以提供覆盖和复用增益,从而支持大量用户和数据速率的指数增长。设计的具有细粒度控制的智能表面将允许我们改变无线信道或环境,以在优化期间根据需要增加多样性和多路复用增益。我们进一步建立了智能表面布局理论和算法,并量化了性能和尺寸的权衡。我们为基站开发了低开销的信道估计和低延迟优化算法,以支持时间信道变化并提高数据速率和连接性。拟议的工作将开发多用户设置的理论和算法,以确保智能表面的可扩展性。这项工作将使第一个低成本,实用的智能表面和算法,支持高移动性用户的显着数据速率的改进。这一奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dinesh Bharadia其他文献

Full-Duplex Wireless for (Joint-) Communication and Sensing
用于(联合)通信和传感的全双工无线
RadSegNet: A Reliable Approach to Radar Camera Fusion
RadSegNet:雷达相机融合的可靠方法
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kshitiz Bansal;Keshav Rungta;Dinesh Bharadia
  • 通讯作者:
    Dinesh Bharadia
HarvestNet: Mining Valuable Training Data from High-Volume Robot Sensory Streams
HarvestNet:从大容量机器人感官流中挖掘有价值的训练数据
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sandeep P. Chinchali;Evgenya Pergament;Manabu Nakanoya;Eyal Cidon;E. Zhang;Dinesh Bharadia;M. Pavone;S. Katti
  • 通讯作者:
    S. Katti
A WiFi and Bluetooth Low-Energy Backscatter Combo Chip With Beam Steering Capabilities
具有波束控制功能的 WiFi 和蓝牙低能量反向散射组合芯片
Protecting Bluetooth User Privacy Through Obfuscation of Carrier Frequency Offset
通过混淆载波频率偏移来保护蓝牙用户隐私

Dinesh Bharadia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dinesh Bharadia', 18)}}的其他基金

Collaborative Research: NeTS: Medium: EdgeRIC: Empowering Real-time Intelligent Control and Optimization for NextG Cellular Radio Access Networks
合作研究:NeTS:媒介:EdgeRIC:为下一代蜂窝无线接入网络提供实时智能控制和优化
  • 批准号:
    2312979
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Programmable Computational Antennas for Sensing and Communications
合作研究:中枢神经系统核心:中:用于传感和通信的可编程计算天线
  • 批准号:
    2211805
  • 财政年份:
    2022
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: SII-NRDZ: SweepSpace: Enabling Autonomous Fine-Grained Spatial Spectrum Sensing and Sharing
合作研究:SII-NRDZ:SweepSpace:实现自主细粒度空间频谱感知和共享
  • 批准号:
    2232481
  • 财政年份:
    2022
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Collaborative Research: CCRI: New: SpecScape: Enabling a Global Spectrum Observatory through Mobile, Wide-band Spectrum Sensing Kits and a Software Ecosystem
合作研究:CCRI:新:SpecScape:通过移动、宽带频谱传感套件和软件生态系统实现全球频谱观测站
  • 批准号:
    2213689
  • 财政年份:
    2022
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT: Small: Cross-Layer Interference Management: Bringing Interference Alignment to Reality
合作研究:SWIFT:小型:跨层干扰管理:将干扰调整变为现实
  • 批准号:
    2030245
  • 财政年份:
    2020
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
SpecEES: Spectrally-Efficient Near-Zero-Power IoT Connectivity with Existing Wi-Fi Infrastructure
SpecEES:与现有 Wi-Fi 基础设施的频谱效率近零功耗物联网连接
  • 批准号:
    1923902
  • 财政年份:
    2019
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
  • 批准号:
    2345339
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2230945
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
  • 批准号:
    2225578
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
  • 批准号:
    2406598
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
  • 批准号:
    2418188
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
  • 批准号:
    2242503
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
  • 批准号:
    2343959
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
  • 批准号:
    2343863
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2341378
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Innovating Volumetric Video Streaming with Motion Forecasting, Intelligent Upsampling, and QoE Modeling
合作研究:CNS 核心:中:通过运动预测、智能上采样和 QoE 建模创新体积视频流
  • 批准号:
    2409008
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了