Collaborative Research: NeTS: Medium: EdgeRIC: Empowering Real-time Intelligent Control and Optimization for NextG Cellular Radio Access Networks
合作研究:NeTS:媒介:EdgeRIC:为下一代蜂窝无线接入网络提供实时智能控制和优化
基本信息
- 批准号:2312979
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NextG cellular networks must support a wide variety of emerging applications, such as augmented reality, autonomous vehicles and remote healthcare, which require radio access with latency, throughput and reliability guarantees hitherto unavailable. Simultaneously, the wireless environment is becoming increasingly dynamic over diverse spectrum bands, user mobility and variable traffic patterns. Complex cross layer interactions imply tractable models are unavailable, and a machine learning approach to optimal resource utilization is critical. This project first develops an open, simple and capable platform, entitled EdgeRIC that supports fine-grain decision making at multiple timescales across the cellular network stack, and second, develops a structured machine learning based approach over this platform that optimally utilizes all system resources to maximize diverse application performance. The project is enhanced by an education plan focusing on machine learning and wireless networking and coordinating workshops and tele-seminars for the research community and industry professionals to disseminate their ideas. Simultaneously, outreach in the form of summer camps and seminars for high school students focusing on machine learning enhances the impact of this project in STEM fields.The project aims at enabling intelligent decision making and control in cellular networks at realtime ( 1ms), while supporting training and adaptation at near-realtime (10ms - 1s) and non-realtime ( 1s). It brings together mathematical methods to develop and analyze reinforcement learning (RL) algorithms and systems development to integrate them into the cellular stack. The project addresses the key challenges of doing so via three main themes. The first focuses on realtime RL algorithms that schedule resources based on the relative priorities of applications, using the structure of the optimal policy to promote fast and scalable learning. The second theme focuses on robust and fast adaptation of these policies, which must operate over dynamic environments and application needs. The third theme addresses scalable learning to determine hierarchical policies operating across the network layers and sites. The themes all come together on a platform, entitled EdgeRIC for implementing multi-modal learning algorithms using the standardized OpenAIGym toolkit. The immediate impact of this project is in creating multi-timescale learning and control for the next generation of cellular networks. This project also advances the fundamental theory of meta and federated RL. The project supports seminars and summer camps for outreach, development of new courses focusing on machine learning for wireless communication, and coordination of workshops and tele-seminars for the research community and industry professionals to disseminate research ideas.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
NextG蜂窝网络必须支持各种新兴应用程序,例如增强现实,自动驾驶汽车和远程医疗保健,这些应用需要具有延迟,吞吐量和可靠性的无线电访问,迄今无法获得延迟,吞吐量和可靠性保证。同时,无线环境在不同的频谱频段,用户移动性和可变流量模式上变得越来越动态。复杂的跨层交互意味着不可用的模型是不可用的,而机器学习方法的最佳资源利用方法至关重要。 该项目首先开发了一个开放,简单且功能强大的平台,标题为“ Edgeric”,该平台支持蜂窝网络堆栈中多个时间尺度上的精细颗粒决策制定,其次,在此平台上开发了一种基于结构化的机器学习方法,该方法可以最佳地利用所有系统资源来最大程度地提高多样化的应用程序性能。 一项教育计划的重点是机器学习和无线网络,并协调研究社区和行业专业人员的讲习班和电视节目,从而增强了该项目。同时,以夏令营和针对机器学习的高中生的夏季训练营和研讨会的形式进行宣传增强了该项目在STEM领域的影响。该项目旨在实时实时在蜂窝网络(1MS)中进行智能决策和控制,同时支持在接近现实的时间(10ms-1s-1s-1s)和非现实时间(1S)和非现实时间(1s)(1s)(1s)。 它汇集了数学方法来开发和分析加强学习(RL)算法和系统开发,以将它们集成到细胞堆栈中。 该项目通过三个主要主题解决了这样做的主要挑战。 第一个侧重于实时RL算法,该算法使用最佳策略的结构来基于应用程序的相对优先级来安排资源,以促进快速可扩展的学习。 第二个主题侧重于这些策略的强大和快速适应,这些策略必须在动态环境和应用需求上运行。 第三个主题介绍了可扩展的学习,以确定在网络层和站点上运行的层次结构策略。 这些主题都在平台上汇集在一起,标题为Edgeric,用于使用标准化的OpenAigym工具包实现多模式学习算法。 该项目的直接影响在于为下一代蜂窝网络创建多时间的学习和控制。 该项目还推进了元和联合RL的基本理论。该项目支持开展活动,开发新课程的研讨会和夏令营,专注于无线沟通的机器学习,并为研究社区和行业专业人员的研讨会和电视节目进行协调,以传播研究思想。该奖项反映了NSF的法规使命,并认为通过基金会的知识优点和广泛的crietia criter scriter scritia criter scritia criter criteria criter criter criteria criteria criter criteria crietia crietia criteria crietia cribitia均值得一提。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dinesh Bharadia其他文献
Full-Duplex Wireless for (Joint-) Communication and Sensing
用于(联合)通信和传感的全双工无线
- DOI:
10.1109/esscirc55480.2022.9911367 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Hany Abolmagd;Raghav Subbaraman;Dinesh Bharadia;S. Shekhar - 通讯作者:
S. Shekhar
RadSegNet: A Reliable Approach to Radar Camera Fusion
RadSegNet:雷达相机融合的可靠方法
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Kshitiz Bansal;Keshav Rungta;Dinesh Bharadia - 通讯作者:
Dinesh Bharadia
HarvestNet: Mining Valuable Training Data from High-Volume Robot Sensory Streams
HarvestNet:从大容量机器人感官流中挖掘有价值的训练数据
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Sandeep P. Chinchali;Evgenya Pergament;Manabu Nakanoya;Eyal Cidon;E. Zhang;Dinesh Bharadia;M. Pavone;S. Katti - 通讯作者:
S. Katti
Protecting Bluetooth User Privacy Through Obfuscation of Carrier Frequency Offset
通过混淆载波频率偏移来保护蓝牙用户隐私
- DOI:
10.1109/tcsii.2022.3216281 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Ali Nikoofard;Hadi Givehchian;N. Bhaskar;Aaron Schulman;Dinesh Bharadia;P. Mercier - 通讯作者:
P. Mercier
A WiFi and Bluetooth Low-Energy Backscatter Combo Chip With Beam Steering Capabilities
具有波束控制功能的 WiFi 和蓝牙低能量反向散射组合芯片
- DOI:
10.1109/ojsscs.2023.3308530 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Shihkai Kuo;Manideep Dunna;Dinesh Bharadia;P. Mercier - 通讯作者:
P. Mercier
Dinesh Bharadia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dinesh Bharadia', 18)}}的其他基金
Collaborative Research: CNS Core: Medium: Programmable Computational Antennas for Sensing and Communications
合作研究:中枢神经系统核心:中:用于传感和通信的可编程计算天线
- 批准号:
2211805 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SII-NRDZ: SweepSpace: Enabling Autonomous Fine-Grained Spatial Spectrum Sensing and Sharing
合作研究:SII-NRDZ:SweepSpace:实现自主细粒度空间频谱感知和共享
- 批准号:
2232481 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: CCRI: New: SpecScape: Enabling a Global Spectrum Observatory through Mobile, Wide-band Spectrum Sensing Kits and a Software Ecosystem
合作研究:CCRI:新:SpecScape:通过移动、宽带频谱传感套件和软件生态系统实现全球频谱观测站
- 批准号:
2213689 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
- 批准号:
2107613 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: Small: Cross-Layer Interference Management: Bringing Interference Alignment to Reality
合作研究:SWIFT:小型:跨层干扰管理:将干扰调整变为现实
- 批准号:
2030245 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SpecEES: Spectrally-Efficient Near-Zero-Power IoT Connectivity with Existing Wi-Fi Infrastructure
SpecEES:与现有 Wi-Fi 基础设施的频谱效率近零功耗物联网连接
- 批准号:
1923902 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
CLSTN3β介导的内质网-线粒体协作调控白色脂肪细胞能量代谢改善肥胖的机制研究
- 批准号:82300980
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多UAV协作的大规模传感网并发充电模型及其服务机制研究
- 批准号:62362017
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
时间敏感型网络系统中面向确定性时延的端网协作传输机制研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
- 批准号:72274225
- 批准年份:2022
- 资助金额:45.00 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
- 批准号:
2343619 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
- 批准号:
2343618 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: EdgeRIC: Empowering Real-time Intelligent Control and Optimization for NextG Cellular Radio Access Networks
合作研究:NeTS:媒介:EdgeRIC:为下一代蜂窝无线接入网络提供实时智能控制和优化
- 批准号:
2312978 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Small: Digital Network Twins: Mapping Next Generation Wireless into Digital Reality
合作研究:NeTS:小型:数字网络双胞胎:将下一代无线映射到数字现实
- 批准号:
2312138 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Small: Digital Network Twins: Mapping Next Generation Wireless into Digital Reality
合作研究:NeTS:小型:数字网络双胞胎:将下一代无线映射到数字现实
- 批准号:
2312139 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant