CDS&E: Statistical Learning Tools for NMR Spectroscopy of Non-Crystalline Materials
CDS
基本信息
- 批准号:2107636
- 负责人:
- 金额:$ 42.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With the support of the Chemical Measurement and Imaging Program in the Division of Chemistry, and partial co-funding from the Ceramics Program in the Division of Materials Research, Professor Philip Grandinetti and his group at the Ohio State University are developing machine learning tools to improve understanding of the physical and chemical properties of glass-containing materials using Nuclear Magnetic Resonance (NMR) Spectroscopy – the technique upon which Magnetic Resonance Imaging (MRI) is based. Specialty glasses continue to play critical roles in a large range of technological applications, such as glass substrates for handheld electronic device displays and lighting, optical fibers, nuclear waste storage, and bio-glass implants. These applications have high societal impact across a wide range of environmental, energy, and health-related issues. A major challenge in tailoring the properties of new glass compositions is the inadequacy of available quantitative details about the structure of glasses, which determines their macroscopic (bulk) properties. Professor Grandinetti is developing more sensitive methods and open-source software tools that perform a deeper analysis of NMR data and give richer details about structure in glassy materials. The work addresses a range of factors determining glass properties such as dimensional stability, strength, phase separation, hardness, and chemical durability. It is providing research opportunities for students from underrepresented groups, in part through a partnership with Berea College in Kentucky. Collaborations provide all students involved in the project with opportunities for interactions with scientists in industry as well as across national boundaries. This project focuses on solving the ill-posed problem of inverting an NMR spectrum into its underlying distribution of nuclear interaction parameters, followed by a quantitative mapping of these parameters into structural distributions. In this effort, Professor Philip Grandinetti and his group are developing open-source Python programs, documentation, and tutorials, and associated progressive web apps to enable fast, easy-to-use, and versatile simulations and analyses of experimental one- and higher-dimensional solid-state NMR spectra. They capitalize on their recent discovery that highly selective excitation of quadrupolar nuclei can extend NMR transition lifetimes and provide dramatic sensitivity enhancements. This advance in turn is expected to enable expanded applications of the statistical learning tools to natural abundance O-17 2D NMR spectra of inorganic oxide materials. Quantification of modifier cation clustering and tetrahedral framework network disorder in a series of alkali and alkaline earth silicate glasses is another aim.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系化学测量和成像项目的支持下,以及材料研究系陶瓷项目的部分共同资助下,俄亥俄州州立大学的Philip Grandinetti教授及其团队正在开发机器学习工具,以利用核磁共振(NMR)光谱来提高对含玻璃材料的物理和化学性质的理解-磁共振成像(MRI)所基于的技术。 特种玻璃继续在大范围的技术应用中发挥关键作用,例如用于手持电子设备显示器和照明、光纤、核废料储存和生物玻璃植入物的玻璃基板。 这些应用在广泛的环境、能源和健康相关问题上具有很高的社会影响力。 定制新玻璃组合物的性质的主要挑战是关于玻璃结构的可用定量细节的不足,这决定了它们的宏观(本体)性质。 Grandinetti教授正在开发更灵敏的方法和开源软件工具,对NMR数据进行更深入的分析,并提供有关玻璃质材料结构的更丰富细节。这项工作解决了一系列决定玻璃性能的因素,如尺寸稳定性,强度,相分离,硬度和化学耐久性。 它正在为来自代表性不足群体的学生提供研究机会,部分是通过与肯塔基州的伯里亚学院的合作。 合作为参与该项目的所有学生提供了与工业界和跨国界科学家互动的机会。该项目的重点是解决将核磁共振谱反演为核相互作用参数的基本分布的不适定问题,然后将这些参数定量映射为结构分布。在这项工作中,Philip Grandinetti教授和他的团队正在开发开源Python程序,文档和教程,以及相关的渐进式Web应用程序,以实现快速,易于使用和多功能的模拟和分析实验一维和更高维固态NMR光谱。他们利用他们最近的发现,即四极核的高选择性激发可以延长NMR跃迁寿命,并提供显着的灵敏度增强。 这一进展反过来有望使统计学习工具的应用扩展到无机氧化物材料的天然丰度O-17 2D NMR谱。另一个目标是量化一系列碱金属和碱土金属硅酸盐玻璃中的改性剂阳离子聚集和四面体框架网络无序。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Philip Grandinetti其他文献
Philip Grandinetti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Philip Grandinetti', 18)}}的其他基金
NMR methodologies for measuring correlated structural distributions in oxide glasses
测量氧化物玻璃中相关结构分布的 NMR 方法
- 批准号:
1807922 - 财政年份:2018
- 资助金额:
$ 42.11万 - 项目类别:
Standard Grant
Natural Abundance Si-29 and O-17 NMR Methods for Measuring Silicate Glass Structure
用于测量硅酸盐玻璃结构的自然丰度 Si-29 和 O-17 NMR 方法
- 批准号:
1506870 - 财政年份:2015
- 资助金额:
$ 42.11万 - 项目类别:
Continuing Grant
Nuclear Magnetic Resonance Methods for Non-Crystalline Solids
非晶固体的核磁共振方法
- 批准号:
1012175 - 财政年份:2010
- 资助金额:
$ 42.11万 - 项目类别:
Standard Grant
NMR Methods for Determining Structure in Oxide Glasses
确定氧化物玻璃结构的 NMR 方法
- 批准号:
0616881 - 财政年份:2006
- 资助金额:
$ 42.11万 - 项目类别:
Continuing Grant
New NMR Methods for Investigating Structure in Inorganic Oxide Glasses
研究无机氧化物玻璃结构的新核磁共振方法
- 批准号:
0111109 - 财政年份:2001
- 资助金额:
$ 42.11万 - 项目类别:
Continuing Grant
Nuclear Magnetic Resonance Spectroscopic Studies of the Structure of Silicate Glasses
硅酸盐玻璃结构的核磁共振波谱研究
- 批准号:
9807498 - 财政年份:1998
- 资助金额:
$ 42.11万 - 项目类别:
Continuing Grant
Solid-State Nuclear Magnetic Resonance Spectroscopic Investigations of the Structure of Silicate Glasses
硅酸盐玻璃结构的固态核磁共振波谱研究
- 批准号:
9501827 - 财政年份:1995
- 资助金额:
$ 42.11万 - 项目类别:
Continuing Grant
相似海外基金
Structural statistical learning of heterogeneous preferences for smart energy choices with a case study on coordinated electric vehicle charging
智能能源选择异构偏好的结构统计学习以及协调电动汽车充电的案例研究
- 批准号:
2342215 - 财政年份:2024
- 资助金额:
$ 42.11万 - 项目类别:
Continuing Grant
CAREER: New Frameworks for Ethical Statistical Learning: Algorithmic Fairness and Privacy
职业:道德统计学习的新框架:算法公平性和隐私
- 批准号:
2340241 - 财政年份:2024
- 资助金额:
$ 42.11万 - 项目类别:
Continuing Grant
Comparison of Machine Learning and Conventional Statistical Modeling for Predicting Readmission Following Acute Heart Failure Hospitalization
机器学习与传统统计模型预测急性心力衰竭住院后再入院的比较
- 批准号:
495410 - 财政年份:2023
- 资助金额:
$ 42.11万 - 项目类别:
Modern Statistics and Statistical Machine Learning
现代统计学和统计机器学习
- 批准号:
2886365 - 财政年份:2023
- 资助金额:
$ 42.11万 - 项目类别:
Studentship
Modern Statistics and Statistical Machine Learning
现代统计学和统计机器学习
- 批准号:
2886852 - 财政年份:2023
- 资助金额:
$ 42.11万 - 项目类别:
Studentship
EAGER: SSMCDAT2023: Revealing Local Symmetry Breaking in Intermetallics: Combining Statistical Mechanics and Machine Learning in PDF Analysis
EAGER:SSMCDAT2023:揭示金属间化合物中的局部对称性破缺:在 PDF 分析中结合统计力学和机器学习
- 批准号:
2334261 - 财政年份:2023
- 资助金额:
$ 42.11万 - 项目类别:
Standard Grant
REU Site: University of North Carolina at Greensboro - Complex Data Analysis using Statistical and Machine Learning Tools
REU 站点:北卡罗来纳大学格林斯伯勒分校 - 使用统计和机器学习工具进行复杂数据分析
- 批准号:
2244160 - 财政年份:2023
- 资助金额:
$ 42.11万 - 项目类别:
Standard Grant
Next-Generation Algorithms in Statistical Genetics Based on Modern Machine Learning
基于现代机器学习的下一代统计遗传学算法
- 批准号:
10714930 - 财政年份:2023
- 资助金额:
$ 42.11万 - 项目类别:
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
$ 42.11万 - 项目类别:
Unravel machine learning blackboxes -- A general, effective and performance-guaranteed statistical framework for complex and irregular inference problems in data science
揭开机器学习黑匣子——针对数据科学中复杂和不规则推理问题的通用、有效和性能有保证的统计框架
- 批准号:
2311064 - 财政年份:2023
- 资助金额:
$ 42.11万 - 项目类别:
Standard Grant