RUI: Asymptotic and Numerical Techniques in Mathematical Modeling of Membrane Filtration

RUI:膜过滤数学建模中的渐近和数值技术

基本信息

  • 批准号:
    2108161
  • 负责人:
  • 金额:
    $ 20.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

Membrane filters – thin sheets of porous medium – find widespread use in applications such as water treatment, various purification processes in the biotech industry, removing impurities from the blood in kidney dialysis, beer clarification, and mask production, among many others. Membrane filters represent a multi-billion-dollar industry worldwide, and many major multinational companies maintain a keen interest in improving and optimizing the membrane filters they produce, in terms of both performance and cost. It is notable that the experimental literature far outweighs the theoretical and numerical; among the theoretical and numerical literature, there is a paucity of studies that offer first-principles, predictive mathematical models and simulations. This project aims to develop novel mathematical models with potential for significant impact in bridging this gap. The long-term goal is to improve and optimize membrane filters, in terms of both performance and cost. The project will involve students in the research.Filter performance depends strongly on key features of the porous membrane, including membrane thickness, internal pore structure and shape, pore connectivity, and variation of pore dimensions in the depth of the membrane. The complexity of the coupling between the membrane morphology, which evolves dynamically during the filtration process, and the details of the particle-laden flow, including possible stochastic behavior of the particles, make filtration and fouling a challenging predictive modeling problem. This project presents a coherent, first-principles approach to model both stochastic effects of particle dynamics and variations in internal membrane structure. The research aims to formulate and analyze novel mathematical models to investigate the evolution of membrane filters with complex internal structures by using asymptotic and numerical techniques. These models will be compared to observations, experiments, and data from industrial partners to understand more fully the co-evolution of membrane internal structure and flow in the context of porous media and membrane filters.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
膜过滤器-多孔介质的薄片-在诸如水处理、生物技术工业中的各种净化过程、在肾透析中从血液中去除杂质、啤酒澄清和面罩生产等应用中得到广泛使用。膜过滤器代表了全球数十亿美元的产业,许多大型跨国公司对改进和优化他们生产的膜过滤器在性能和成本方面保持着浓厚的兴趣。值得注意的是,实验文献远远超过理论和数值;在理论和数值文献中,提供第一原理、预测数学模型和模拟的研究很少。该项目旨在开发新的数学模型,有可能在弥合这一差距方面产生重大影响。长期目标是在性能和成本方面改进和优化膜过滤器。过滤器的性能在很大程度上取决于多孔膜的关键特征,包括膜厚度、内部孔结构和形状、孔连通性以及膜深度孔尺寸的变化。在过滤过程中动态演变的膜形态与载有颗粒的流的细节(包括颗粒的可能随机行为)之间的耦合的复杂性使得过滤和结垢成为具有挑战性的预测建模问题。该项目提出了一个连贯的,第一原理的方法来模拟粒子动力学和内部膜结构的变化的随机效应。该研究旨在制定和分析新的数学模型,通过使用渐近和数值技术来研究具有复杂内部结构的膜过滤器的演变。这些模型将与来自工业合作伙伴的观察、实验和数据进行比较,以更全面地了解多孔介质和膜过滤器背景下膜内部结构和流动的共同进化。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modeling of the Effects of Pleat Packing Density and Cartridge Geometry on the Performance of Pleated Membrane Filters
  • DOI:
    10.3390/fluids6060209
  • 发表时间:
    2021-06-01
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Persaud, Dave;Smirnov, Mikhail;Sanaei, Pejman
  • 通讯作者:
    Sanaei, Pejman
Flow and transport in a pleated filter
褶式过滤器中的流动和传输
  • DOI:
    10.1063/5.0102940
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Fong, Daniel;Sanaei, Pejman
  • 通讯作者:
    Sanaei, Pejman
Flow and fouling in elastic membrane filters with hierarchical branching pore morphology
  • DOI:
    10.1063/5.0054637
  • 发表时间:
    2021-06-01
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Chen,Zhengyi;Liu,Shi Yue;Sanaei,Pejman
  • 通讯作者:
    Sanaei,Pejman
On the performance of multilayered membrane filters
  • DOI:
    10.1007/s10665-021-10118-2
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    D. Fong;L. Cummings;S. J. Chapman;P. Sanaei
  • 通讯作者:
    D. Fong;L. Cummings;S. J. Chapman;P. Sanaei
Simulating liquid–gas interfaces and moving contact lines with the immersed boundary method
  • DOI:
    10.1063/5.0086452
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Michael Y. Li;Daniel Chin;Charles Puelz;P. Sanaei
  • 通讯作者:
    Michael Y. Li;Daniel Chin;Charles Puelz;P. Sanaei
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pejman Sanaei其他文献

A Simplified Mathematical Model for Cell Proliferation in a Tissue-Engineering Scaffold
  • DOI:
    10.1007/s11538-024-01390-1
  • 发表时间:
    2024-11-30
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Amy María Sims;Mona James;Sai Kunnatha;Shreya Srinivasan;Haniyeh Fattahpour;Ashok Joseph;Paul Joseph;Pejman Sanaei
  • 通讯作者:
    Pejman Sanaei

Pejman Sanaei的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Hybrid asymptotic-numerical schemes for exponentially small selection mechanisms
指数小选择机制的混合渐近数值方案
  • 批准号:
    2427722
  • 财政年份:
    2020
  • 资助金额:
    $ 20.41万
  • 项目类别:
    Studentship
Asymptotic and numerical approaches to three-dimensional flows and their stability
三维流动的渐近数值方法及其稳定性
  • 批准号:
    2091877
  • 财政年份:
    2018
  • 资助金额:
    $ 20.41万
  • 项目类别:
    Studentship
Asymptotic and Numerical Analysis of Wave Propagation in Thin-Structure Waveguides
薄结构波导中波传播的渐近和数值分析
  • 批准号:
    1939980
  • 财政年份:
    2017
  • 资助金额:
    $ 20.41万
  • 项目类别:
    Studentship
New problems in continuum mechanics: asymptotic eigenvalue distributions, rigorous numerical stability analysis and weakly nonlinear asymptotics in periodic thin film flow
连续介质力学的新问题:周期性薄膜流中的渐近特征值分布、严格的数值稳定性分析和弱非线性渐近
  • 批准号:
    1400555
  • 财政年份:
    2014
  • 资助金额:
    $ 20.41万
  • 项目类别:
    Continuing Grant
Asymptotic and numerical analysis of hydraulic fractures
水力裂缝的渐近和数值分析
  • 批准号:
    195803-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 20.41万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotic and numerical analysis of hydraulic fractures
水力裂缝的渐近和数值分析
  • 批准号:
    195803-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 20.41万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotic and Numerical Methods in Alternative Energy Models
替代能源模型中的渐近和数值方法
  • 批准号:
    405682-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 20.41万
  • 项目类别:
    Vanier Canada Graduate Scholarships - Doctoral
Asymptotic and numerical analysis of hydraulic fractures
水力裂缝的渐近和数值分析
  • 批准号:
    195803-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 20.41万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotic and Numerical Methods in Alternative Energy Models
替代能源模型中的渐近和数值方法
  • 批准号:
    405682-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 20.41万
  • 项目类别:
    Vanier Canada Graduate Scholarships - Doctoral
Asymptotic and Numerical Methods in Alternative Energy Models
替代能源模型中的渐近和数值方法
  • 批准号:
    405682-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 20.41万
  • 项目类别:
    Vanier Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了