Nonlinear Dynamics of Colloidal Rotors: Chaos and Order

胶体转子的非线性动力学:混沌与有序

基本信息

  • 批准号:
    2108502
  • 负责人:
  • 金额:
    $ 40.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Tiny, micron-sized particles called colloids find ubiquitous uses in engineering and biomedical applications, for example, microfluidics and drug delivery, and consumer products, like paint. In recent years, there has been great effort to assemble colloids into new functional materials with designer architecture using electric and magnetic fields. Of particular interest are colloids that spin (rotors), because in such systems the flows stirred by the rotating particles add to the electrostatic interactions thereby vastly expanding the possible structures. This project will study the theory of dynamics of colloids placed between two planar electrodes in order to understand the mechanisms of the field-driven particle assembly. The project integrates knowledge across the fields of applied math, fluid mechanics and soft matter, which will be very beneficial for the training of the students associated with the project. Visually appealing experiments will help educate the public about mathematics and fluid dynamics. This proposal is concerned with a theoretical investigation of the dynamics of rotating colloids powered by the Quincke effect, which is the spontaneous spinning of a dielectric sphere in an applied uniform electric field. The Quincke rotor dynamics in free space is described by the Lorenz equations and the system has gathered attention as one of the physical realizations of Lorenz chaos: at high electric fields the sphere spins irregularly around a fixed axis. However, the dynamics of Quincke rotors in confinement is strikingly different than that in free space. An individual rotor displays three-dimensional motion with periodic reorientation of the axis of rotation. Collectives of hovering Quincke rotors are found to self-organize into stable clusters or snaking chains. This project will investigate the electrohydrodynamics of particles placed between two planar electrodes. The novel mathematical challenges are many and include analytical solutions of single particle dynamics near boundaries, careful consideration of pair-wise hydrodynamic and electrostatic interactions in confinement, and integration of these analytical results into a Stokesian-dynamics-based algorithm for a very large numbers of particles. Benchmark experiments to complement the mathematical research are proposed to justify and validate the mathematical models and to ensure that the research has impact both in and beyond the applied mathematics community. Educational impact includes bringing direct experimental experience in fluid dynamics and soft matter research to applied mathematics undergraduate and graduate students at Northwestern University. The emergent behavior of the Quincke rotors will likely open new research directions across various fields, e.g., non-equilibrium soft matter, materials engineering, and fluid dynamics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
被称为胶体的微小的微米级颗粒在工程和生物医学应用中无处不在,例如,微流体和药物输送以及消费品,如油漆。近年来,人们一直在努力利用电场和磁场将胶体组装成具有设计师架构的新功能材料。特别令人感兴趣的是旋转的胶体(转子),因为在这样的系统中,由旋转颗粒搅拌的流动增加了静电相互作用,从而极大地扩展了可能的结构。本计画将研究置于两平面电极间胶体的动力学理论,以了解场驱动粒子组装的机制。该项目整合了应用数学、流体力学和软物质领域的知识,这将非常有利于培养与该项目相关的学生。视觉上吸引人的实验将有助于教育公众数学和流体动力学。 这个建议是关于由Quincke效应驱动的旋转胶体动力学的理论研究,Quincke效应是电介质球在施加的均匀电场中的自发旋转。自由空间中的Quincke转子动力学由Lorenz方程描述,并且该系统作为Lorenz混沌的物理实现之一而受到关注:在高电场下,球体围绕固定轴不规则地旋转。然而,Quincke转子在禁闭中的动力学与自由空间中的动力学有着显著的不同。一个单独的转子显示三维运动与旋转轴的周期性重新定向。盘旋的昆克转子的集体被发现自组织成稳定的集群或蛇形链。本计画将探讨置于两平面电极间之粒子之电流体动力学。新的数学挑战有很多,包括边界附近的单粒子动力学的分析解决方案,仔细考虑成对的流体动力学和静电相互作用的限制,并将这些分析结果集成到一个非常大数量的粒子的斯托克斯动力学为基础的算法。提出了补充数学研究的基准实验,以证明和验证数学模型,并确保研究在应用数学界内外都有影响。教育影响包括将流体动力学和软物质研究的直接实验经验带给西北大学的应用数学本科生和研究生。昆克转子的紧急行为可能会在各个领域开辟新的研究方向,例如,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Particle-surface interactions in a uniform electric field
均匀电场中的颗粒-表面相互作用
  • DOI:
    10.1103/physreve.106.034607
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Wang, Zhanwen;Miksis, Michael J.;Vlahovska, Petia M.
  • 通讯作者:
    Vlahovska, Petia M.
Drag force on spherical particles trapped at a liquid interface
液体界面上捕获的球形颗粒的阻力
  • DOI:
    10.1103/physrevfluids.7.124001
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Zhou, Zhi;Vlahovska, Petia M.;Miksis, Michael J.
  • 通讯作者:
    Miksis, Michael J.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Petia Vlahovska其他文献

A vesicle microrheometer for viscosity measurements of lipids and polymer bilayers
  • DOI:
    10.1016/j.bpj.2021.11.2353
  • 发表时间:
    2022-02-11
  • 期刊:
  • 影响因子:
  • 作者:
    Hammad A. Faizi;Rumiana Dimova;Petia Vlahovska
  • 通讯作者:
    Petia Vlahovska

Petia Vlahovska的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Petia Vlahovska', 18)}}的其他基金

Travel: CECAM Flagship Workshop
旅行:CECAM旗舰工作坊
  • 批准号:
    2317140
  • 财政年份:
    2023
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
Active Matter and Complex Media
活性物质和复杂介质
  • 批准号:
    2227695
  • 财政年份:
    2022
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
Electrohydrodynamic interactions of drops
液滴的电流体动力学相互作用
  • 批准号:
    2126498
  • 财政年份:
    2021
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
Motile colloids with tunable random walk: individual dynamics and collective behavior
具有可调随机游走的运动胶体:个体动力学和集体行为
  • 批准号:
    2004926
  • 财政年份:
    2020
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
Electromechanical Properties and Deformation of Biomembranes
生物膜的机电特性和变形
  • 批准号:
    1748049
  • 财政年份:
    2017
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Electrorotational fluid instabilities
合作研究:电旋转流体不稳定性
  • 批准号:
    1704996
  • 财政年份:
    2017
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Quantitative Analysis of Liposome Deformation at Nanoscale Using Resistive Pulse Sensing in Solid State Nanopores
合作研究:利用固态纳米孔中的电阻脉冲传感对纳米尺度脂质体变形进行定量分析
  • 批准号:
    1740011
  • 财政年份:
    2017
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Quantitative Analysis of Liposome Deformation at Nanoscale Using Resistive Pulse Sensing in Solid State Nanopores
合作研究:利用固态纳米孔中的电阻脉冲传感对纳米尺度脂质体变形进行定量分析
  • 批准号:
    1562471
  • 财政年份:
    2016
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
Electrohydrodynamics of particle-covered drops
颗粒覆盖液滴的电流体动力学
  • 批准号:
    1437545
  • 财政年份:
    2015
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
EAGER: Emergent order of hydrodynamically coupled microrotors
EAGER:流体动力耦合微转子的涌现顺序
  • 批准号:
    1544196
  • 财政年份:
    2015
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant

相似国自然基金

β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

CAREER: Colloidal Dynamics under Electrodiffusiophoresis
职业:电扩散电泳下的胶体动力学
  • 批准号:
    2239361
  • 财政年份:
    2023
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Continuing Grant
Physics-informed inverse design of dynamics of colloidal particle self-assembly
胶体颗粒自组装动力学的物理逆向设计
  • 批准号:
    23K13078
  • 财政年份:
    2023
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Thermally Activated Dynamics in 2D Colloidal Glasses and Crystals
二维胶体玻璃和晶体中的热激活动力学
  • 批准号:
    2203380
  • 财政年份:
    2022
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
Colloidal-rods for examining polymer dynamics in complex flows
用于检查复杂流动中聚合物动力学的胶体棒
  • 批准号:
    22K14738
  • 财政年份:
    2022
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Experimental study of the conformation and dynamics of active colloidal polymers
活性胶体聚合物构象与动力学的实验研究
  • 批准号:
    2028652
  • 财政年份:
    2020
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
Dynamics of polyelectrolyte adsorption and colloidal flocculation studied using model colloids
使用模型胶体研究聚电解质吸附和胶体絮凝的动力学
  • 批准号:
    20F20388
  • 财政年份:
    2020
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Exciton Dynamics in Colloidal Lead Sulfide (PbS) Nanosheets
胶体硫化铅 (PbS) 纳米片中的激子动力学
  • 批准号:
    1905217
  • 财政年份:
    2019
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
Orientation and stress dynamics in shear thickening colloidal rod suspensions
剪切增稠胶体棒悬浮液中的取向和应力动力学
  • 批准号:
    1907705
  • 财政年份:
    2019
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
Dynamics of Stratification in Multicomponent Colloidal Films During Evaporative Drying
蒸发干燥过程中多组分胶体膜的分层动力学
  • 批准号:
    1903189
  • 财政年份:
    2019
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
Multiscale molecular dynamics approaches to investigate non-equilibrium phenomena of colloidal assemblies
研究胶体组装非平衡现象的多尺度分子动力学方法
  • 批准号:
    2135626
  • 财政年份:
    2018
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了