Motile colloids with tunable random walk: individual dynamics and collective behavior
具有可调随机游走的运动胶体:个体动力学和集体行为
基本信息
- 批准号:2004926
- 负责人:
- 金额:$ 56.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical Abstract:Flocks of birds and schools of fish are familiar examples of emergent collective behavior, where interactions between self-propelled (active) individuals lead to coherent motion on a scale much larger than the isolated unit. Similar phenomena have been observed with active micro-particles such as bacteria and motile colloids. Recently, the Quincke instability (spontaneous spinning of a dielectric particle in an applied uniform DC field) has attracted great interest as a means of propelling colloids, by simply letting the particles roll on a surface. The research team lead by Petia Vlahovska has found that Quincke rollers can be designed to perform Run-and-Tumble-like locomotion mimicking bacteria such as E. coli. Populations of the Quincke random walkers self-organize and exhibit behaviors reminiscent of bacterial suspensions such as dynamic clusters and mesoscale turbulent-like flows. However, the physical mechanisms underlying the self-organization are unknown. To fill this void, the research team will carry out a combined experimental and theoretical study that systematically explores the parameter space of particle density, activity, shape and motility pattern of the individual colloid. In addition to advancing basic knowledge, the research outcomes may lead to the design of novel active materials (e.g., suspensions with microstructure and effective viscosity tunable by electric field). The visually appealing nature of the experiments will excite students and the general public about active matter and electrohydrodynamics. The principal investigator will be involved in the successful outreach programs at Northwestern University to translate the relevance and significance of this work to attract students from underrepresented groups in science and engineering.Technical Abstract:Active particles such as swimming bacteria or self-propelled colloids spontaneously assemble into large-scale dynamic structures. The emergence of the collective states from the motility pattern of the individual particles, typically a random walk, is yet to be probed in a well-defined synthetic system. The Quincke random walker is a promising new experimental platform to explore active locomotion at the microscale and a testbed for the abundant theoretical models of the collective dynamics of active matter. For the first time, the collective dynamics of run-and-tumble microswimmers will be experimentally studied under well defined and controllable conditions e.g., particle density, speed (i.e., activity) and locomotion type (e.g., run-and-tumble and Levy walks), which can yield potentially transformative knowledge about the relation between the macroscale dynamics and the microswimmers motion and interactions. The experimental research will be complemented by theoretical modeling of the Quincke-walker dynamics, using microhydrodynamics approaches, to elucidate the physical mechanisms of the observed phenomena. The project integrates knowledge across the fields of fluid mechanics and soft matter, and thus the principal investigator anticipates both a much deeper understanding of the underlying physics as well as the discovery of new dynamical regimes and engineering opportunities. The research is interdisciplinary which will be very beneficial for the education and development of the students associated with the project.This Division of Materials Research (DMR) grant supports research to develop a novel experimental platform and the planned experiments and simulations for understanding the emergence of self-organization with funding from the Condensed Matter Physics (CMP) Program in DMR of the Mathematical and Physical Sciences Directorate.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:鸟群和鱼群是常见的紧急集体行为的例子,自我推进(主动)的个人之间的相互作用导致连贯的运动规模远远大于孤立的单位。类似的现象已经在活性微粒如细菌和活动胶体中观察到。 最近,Quincke不稳定性(在施加的均匀DC场中电介质颗粒的自发自旋)作为通过简单地让颗粒在表面上滚动来推进胶体的手段引起了极大的兴趣。 由Petia Vlahovska领导的研究小组发现,昆克滚筒可以被设计成模仿大肠杆菌等细菌进行类似奔跑和翻滚的运动。杆菌群体的昆克随机游走者自我组织和表现出的行为让人想起细菌悬浮液,如动态集群和中尺度的顺从性一样的流。 然而,自组织背后的物理机制是未知的。为了填补这一空白,研究小组将进行实验和理论相结合的研究,系统地探索单个胶体的颗粒密度,活性,形状和运动模式的参数空间。 除了推进基础知识之外,研究成果还可能导致新型活性材料的设计(例如,具有微结构和可通过电场调节的有效粘度的悬浮液)。实验的视觉吸引力将激发学生和公众对活性物质和电流体力学的兴趣。首席研究员将参与西北大学的成功推广计划,以翻译这项工作的相关性和意义,以吸引来自科学和工程领域代表性不足的群体的学生。技术摘要:活动粒子,如游泳细菌或自推进胶体自发组装成大规模的动态结构。从单个粒子的运动模式(通常是随机行走)中出现的集体状态还有待于在一个定义明确的合成系统中进行探索。Quincke无规步行者是探索微尺度主动运动的一个很有前途的新实验平台,也是研究活性物质集体动力学丰富理论模型的一个试验平台。第一次,运行和翻滚微型游泳者的集体动力学将在明确定义和可控的条件下进行实验研究,颗粒密度,速度(即,活动)和运动类型(例如,奔跑翻滚和利维行走),这可以产生有关宏观动态与微型游泳者运动和相互作用之间关系的潜在变革性知识。实验研究将通过使用微流体动力学方法对Quincke-walker动力学进行理论建模来补充,以阐明所观察到的现象的物理机制。该项目整合了流体力学和软物质领域的知识,因此首席研究员预计将对基础物理学有更深入的了解,并发现新的动力学机制和工程机会。该研究是跨学科的,这将是非常有益的教育和发展的学生与该项目有关。材料研究(DMR)的拨款支持研究开发一个新的实验平台和计划的实验和模拟,以了解自组织的出现与凝聚态物理(CMP)的资金。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Particle-surface interactions in a uniform electric field
均匀电场中的颗粒-表面相互作用
- DOI:10.1103/physreve.106.034607
- 发表时间:2022
- 期刊:
- 影响因子:2.4
- 作者:Wang, Zhanwen;Miksis, Michael J.;Vlahovska, Petia M.
- 通讯作者:Vlahovska, Petia M.
Spontaneous self-propulsion and nonequilibrium shape fluctuations of a droplet enclosing active particles
- DOI:10.1038/s42005-022-00872-9
- 发表时间:2022-04-14
- 期刊:
- 影响因子:5.5
- 作者:Kokot, Gasper;Faizi, Hammad A.;Vlahovska, Petia M.
- 通讯作者:Vlahovska, Petia M.
Persistence length regulates emergent dynamics in active roller ensembles
持续长度调节主动滚轮组中的紧急动态
- DOI:10.1039/d1sm00363a
- 发表时间:2021
- 期刊:
- 影响因子:3.4
- 作者:Zhang, Bo;Karani, Hamid;Vlahovska, Petia M.;Snezhko, Alexey
- 通讯作者:Snezhko, Alexey
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Petia Vlahovska其他文献
A vesicle microrheometer for viscosity measurements of lipids and polymer bilayers
- DOI:
10.1016/j.bpj.2021.11.2353 - 发表时间:
2022-02-11 - 期刊:
- 影响因子:
- 作者:
Hammad A. Faizi;Rumiana Dimova;Petia Vlahovska - 通讯作者:
Petia Vlahovska
Petia Vlahovska的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Petia Vlahovska', 18)}}的其他基金
Electrohydrodynamic interactions of drops
液滴的电流体动力学相互作用
- 批准号:
2126498 - 财政年份:2021
- 资助金额:
$ 56.11万 - 项目类别:
Standard Grant
Nonlinear Dynamics of Colloidal Rotors: Chaos and Order
胶体转子的非线性动力学:混沌与有序
- 批准号:
2108502 - 财政年份:2021
- 资助金额:
$ 56.11万 - 项目类别:
Standard Grant
Electromechanical Properties and Deformation of Biomembranes
生物膜的机电特性和变形
- 批准号:
1748049 - 财政年份:2017
- 资助金额:
$ 56.11万 - 项目类别:
Standard Grant
Collaborative Research: Electrorotational fluid instabilities
合作研究:电旋转流体不稳定性
- 批准号:
1704996 - 财政年份:2017
- 资助金额:
$ 56.11万 - 项目类别:
Standard Grant
Collaborative Research: Quantitative Analysis of Liposome Deformation at Nanoscale Using Resistive Pulse Sensing in Solid State Nanopores
合作研究:利用固态纳米孔中的电阻脉冲传感对纳米尺度脂质体变形进行定量分析
- 批准号:
1740011 - 财政年份:2017
- 资助金额:
$ 56.11万 - 项目类别:
Standard Grant
Collaborative Research: Quantitative Analysis of Liposome Deformation at Nanoscale Using Resistive Pulse Sensing in Solid State Nanopores
合作研究:利用固态纳米孔中的电阻脉冲传感对纳米尺度脂质体变形进行定量分析
- 批准号:
1562471 - 财政年份:2016
- 资助金额:
$ 56.11万 - 项目类别:
Standard Grant
Electrohydrodynamics of particle-covered drops
颗粒覆盖液滴的电流体动力学
- 批准号:
1437545 - 财政年份:2015
- 资助金额:
$ 56.11万 - 项目类别:
Standard Grant
EAGER: Emergent order of hydrodynamically coupled microrotors
EAGER:流体动力耦合微转子的涌现顺序
- 批准号:
1544196 - 财政年份:2015
- 资助金额:
$ 56.11万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Dynamics of Binary Anisotropic Magnetic Colloids
职业:二元各向异性磁胶体动力学
- 批准号:
2338064 - 财政年份:2024
- 资助金额:
$ 56.11万 - 项目类别:
Continuing Grant
CAREER: Phoretic Transport of Membrane-Bound Biological Colloids in Complex Environments
职业:复杂环境中膜结合生物胶体的电泳传输
- 批准号:
2237177 - 财政年份:2023
- 资助金额:
$ 56.11万 - 项目类别:
Continuing Grant
2023 Liquid Crystals Gordon Research Conference & Gordon Research Seminar
2023年液晶戈登研究会议
- 批准号:
10683604 - 财政年份:2023
- 资助金额:
$ 56.11万 - 项目类别:
Observation of multiple optical phenomena using a single wavelength: Prediction of coagulation of colloids by simultaneous measurement of light scattering and fluorescence
使用单一波长观察多种光学现象:通过同时测量光散射和荧光来预测胶体的凝固
- 批准号:
23K14044 - 财政年份:2023
- 资助金额:
$ 56.11万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mechanoluminescent nanomaterials for optogenetic neuromodulation
用于光遗传学神经调节的机械发光纳米材料
- 批准号:
10616188 - 财政年份:2023
- 资助金额:
$ 56.11万 - 项目类别:
Stabilization of therapeutic microbes for inclusion in a liquid matrix for delivery to the intestines
稳定治疗微生物以包含在液体基质中以输送到肠道
- 批准号:
10603190 - 财政年份:2023
- 资助金额:
$ 56.11万 - 项目类别:
An air-liquid interface system to study Bordetella pertussis interactions with respiratory epithelia
研究百日咳博德特氏菌与呼吸道上皮细胞相互作用的气液界面系统
- 批准号:
10665943 - 财政年份:2023
- 资助金额:
$ 56.11万 - 项目类别:
Development of a rapid, scalable, and deployable point-of-care blood volume diagnostic for monitoring postpartum and trauma-related hemorrhage
开发快速、可扩展且可部署的护理点血容量诊断,用于监测产后和创伤相关出血
- 批准号:
10603819 - 财政年份:2023
- 资助金额:
$ 56.11万 - 项目类别:
The behaviour of polymer colloids in freshwater flow environment
淡水流环境中聚合物胶体的行为
- 批准号:
2881441 - 财政年份:2023
- 资助金额:
$ 56.11万 - 项目类别:
Studentship
CAREER: Biomimetic Swarm of Active Colloids with Off-Center Interaction Sites
职业:具有偏离中心相互作用位点的仿生活性胶体群
- 批准号:
2238915 - 财政年份:2023
- 资助金额:
$ 56.11万 - 项目类别:
Continuing Grant














{{item.name}}会员




