Collaborative Research: CDS&E: Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS) to maximize the science return of next generation cosmological experiments

合作研究:CDS

基本信息

  • 批准号:
    2108944
  • 负责人:
  • 金额:
    $ 36.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

The Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS) project leverages recent major advances in computational galaxy formation to produce the largest suite of cosmological simulations with full baryonic physics designed to train machine learning algorithms for a broad range of applications, including thousands of cosmological and feedback parameter variations. This project will use this unique dataset to study how to maximize the science return from next generation cosmological surveys. Although the surveys will constrain the value of the cosmological parameters with unprecedented accuracy, achieving this goal requires overcoming two major obstacles: (1) the optimal summary statistic is unknown, and (2) a lot of the information is on scales significantly affected by baryonic processes that are still poorly understood. CAMELS will (1) develop neural networks to help extract the most cosmological information, and (2) perform thousands of simulations over a wide range of parameters to quantify uncertainties in baryonic effects. All CAMELS data products will be publicly available, to enable research and engagement by the broader community. The team will work to increase the participation and success of women and underrepresented minorities by providing dedicated mentoring and early access to research, through three programs for undergraduate students: (1) a summer research program co-organized by the National Society of Black Physicists and the Simons Observatory; (2) the AstroCom NYC program, joining other mentors from the City University of New York, the American Museum of Natural History, and the Flatiron Institute; and (3) the new Colors of Astrophysics program at the University of Connecticut.Upcoming experiments such as DES, DESI, LSST, WFIRST, SKA, and Euclid will improve our understanding of fundamental physics and the origin and fate of the Universe. CAMELS will help to determine the optimal summary statistic to apply to the non-Gaussian density fields observed in most cosmological surveys, and to quantify uncertainties in subgrid models for key astrophysical processes such as feedback from stars and massive black holes, which limit the use of hydrodynamic simulations. The neural networks and thousands of simulations that will be used by CAMELS will produce a distinct qualitative improvement over previous work.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
宇宙学和天体物理学与机器学习模拟(CAMELS)项目利用计算星系形成的最新重大进展,产生最大的宇宙学模拟套件,具有完整的重子物理学,旨在为广泛的应用训练机器学习算法,包括数千个宇宙学和反馈参数变化。 该项目将使用这个独特的数据集来研究如何最大限度地提高下一代宇宙学调查的科学回报。 虽然巡天将以前所未有的精确度限制宇宙学参数的值,但要实现这一目标需要克服两个主要障碍:(1)最佳汇总统计量是未知的,(2)许多信息都是在受重子过程影响的尺度上,而重子过程仍然知之甚少。 CAMELS将(1)开发神经网络以帮助提取大多数宇宙学信息,(2)在广泛的参数范围内进行数千次模拟,以量化重子效应的不确定性。 CAMELS的所有数据产品都将公开提供,以便更广泛的社区进行研究和参与。 该小组将通过为本科生提供三个方案,努力提高妇女和代表性不足的少数民族的参与和成功,提供专门的指导和抢先体验研究:(1)由全国黑人物理学家协会和西蒙斯天文台共同组织的夏季研究方案;(2)AstroCom NYC计划,加入来自纽约城市大学、美国自然历史博物馆和熨斗研究所的其他导师;(3)康涅狄格大学新的天体物理学色彩计划。即将进行的DES、DESI、LSST、WFIRST、SKA和欧几里得等实验将提高我们对基础物理和宇宙起源与命运的理解。 CAMELS将有助于确定适用于大多数宇宙学调查中观察到的非高斯密度场的最佳汇总统计量,并量化关键天体物理过程的次网格模型中的不确定性,例如来自恒星和大质量黑洞的反馈,这限制了流体动力学模拟的使用。 CAMELS将使用的神经网络和数千个模拟将产生比以前的工作明显的质量改进。该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(28)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Percent-level constraints on baryonic feedback with spectral distortion measurements
光谱失真测量对重子反馈的百分比水平约束
  • DOI:
    10.1103/physrevd.105.083505
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Thiele, Leander;Wadekar, Digvijay;Hill, J. Colin;Battaglia, Nicholas;Chluba, Jens;Villaescusa-Navarro, Francisco;Hernquist, Lars;Vogelsberger, Mark;Anglés-Alcázar, Daniel;Marinacci, Federico
  • 通讯作者:
    Marinacci, Federico
Efficient Long-range Active Galactic Nuclei (AGNs) Feedback Affects the Low-redshift Lyα Forest
高效的远程活跃星系核 (AGN) 反馈影响低红移 Lyα 森林
  • DOI:
    10.3847/2041-8213/acb7f1
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tillman, Megan Taylor;Burkhart, Blakesley;Tonnesen, Stephanie;Bird, Simeon;Bryan, Greg L.;Anglés-Alcázar, Daniel;Davé, Romeel;Genel, Shy
  • 通讯作者:
    Genel, Shy
From EMBER to FIRE: predicting high resolution baryon fields from dark matter simulations with Deep Learning
  • DOI:
    10.1093/mnras/stab3088
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mauro Bernardini;R. Feldmann;D. Angl'es-Alc'azar;M. Boylan-Kolchin;J. Bullock;L. Mayer;J. Stadel
  • 通讯作者:
    Mauro Bernardini;R. Feldmann;D. Angl'es-Alc'azar;M. Boylan-Kolchin;J. Bullock;L. Mayer;J. Stadel
The black hole population in low-mass galaxies in large-scale cosmological simulations
大规模宇宙学模拟中低质量星系中的黑洞数量
  • DOI:
    10.1093/mnras/stac1659
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Haidar, Houda;Habouzit, Mélanie;Volonteri, Marta;Mezcua, Mar;Greene, Jenny;Neumayer, Nadine;Anglés-Alcázar, Daniel;Martin-Navarro, Ignacio;Hoyer, Nils;Dubois, Yohan
  • 通讯作者:
    Dubois, Yohan
Breaking baryon-cosmology degeneracy with the electron density power spectrum
  • DOI:
    10.1088/1475-7516/2022/04/046
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    A. Nicola;F. Villaescusa-Navarro;D. Spergel;J. Dunkley;D. Angl'es-Alc'azar;Romeel Dav'e;S. Genel;L. Hernquist;D. Nagai;R. Somerville;Benjamin Dan Wandelt
  • 通讯作者:
    A. Nicola;F. Villaescusa-Navarro;D. Spergel;J. Dunkley;D. Angl'es-Alc'azar;Romeel Dav'e;S. Genel;L. Hernquist;D. Nagai;R. Somerville;Benjamin Dan Wandelt
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Angles-Alcazar其他文献

Daniel Angles-Alcazar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Angles-Alcazar', 18)}}的其他基金

The Interscale Galactic Nuclei Simulations (IGNIS): Hyper-refined black hole growth and feedback in cosmological environments
跨尺度星系核模拟(IGNIS):宇宙环境中超精细的黑洞生长和反馈
  • 批准号:
    2009687
  • 财政年份:
    2020
  • 资助金额:
    $ 36.11万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347345
  • 财政年份:
    2024
  • 资助金额:
    $ 36.11万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
  • 批准号:
    2347423
  • 财政年份:
    2024
  • 资助金额:
    $ 36.11万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347344
  • 财政年份:
    2024
  • 资助金额:
    $ 36.11万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
  • 批准号:
    2347422
  • 财政年份:
    2024
  • 资助金额:
    $ 36.11万
  • 项目类别:
    Standard Grant
CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
  • 批准号:
    2420358
  • 财政年份:
    2024
  • 资助金额:
    $ 36.11万
  • 项目类别:
    Standard Grant
CDS&E/Collaborative Research: Data-Driven Inverse Design of Additively Manufacturable Aperiodic Architected Cellular Materials
CDS
  • 批准号:
    2245298
  • 财政年份:
    2023
  • 资助金额:
    $ 36.11万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E-MSS: Community detection via covariance structures
合作研究:CDS
  • 批准号:
    2245380
  • 财政年份:
    2023
  • 资助金额:
    $ 36.11万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Systematic Predictions for Dynamical Signatures of New Dark Matter Physics in Galaxies
合作研究:CDS
  • 批准号:
    2307787
  • 财政年份:
    2023
  • 资助金额:
    $ 36.11万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Computational Exploration of Electrically Conductive Metal-Organic Frameworks as Cathode Materials in Lithium-Sulfur Batteries
合作研究:CDS
  • 批准号:
    2302618
  • 财政年份:
    2023
  • 资助金额:
    $ 36.11万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了