GOALI: High-Energy Density and Low Polysulfide Shuttling Sodium-Sulfur Battery System

GOALI:高能量密度、低多硫化物穿梭钠硫电池系统

基本信息

项目摘要

Concerns over global energy supply and CO2 emissions have spurred intensive research on energy storage technologies to facilitate the growth and integration of renewable energy sources such as wind and solar for electric transportation and power grids. Electrochemical battery systems are the most promising energy storage technology that would transform these industries. However, incumbent lithium-ion battery technologies are unlikely to meet the energy density and cost requirements. Further, their scale-up and wider adoption are constrained by resource availability. Therefore, new high-energy density battery systems using abundant and low-cost materials are needed to meet these challenges. In collaboration with Saft America, the investigators propose a high-energy density and low polysulfide shuttling sodium-sulfur battery that takes advantage of abundant elements such as sodium, sulfur and oxygen. Additionally, this new technology will synergistically incorporate multiple reactions in a single electrochemical system. The development of the high-energy density and low-cost sodium-sulfur battery technology can potentially have transformational impact on the nation’s energy security. The practical, scalable, and cost-effective battery technology developed here can enable wider adoption of battery technology for transportation and electrical grid with limited resource constraints for the material supply chain. By working with Saft America, this project will enhance partnerships between academia and industry and facilitate the transfer of laboratory inventions to the market place. Graduate and undergraduate students will receive training in research and industry internship through this project, and institutional resources will be leveraged to recruit students from underrepresented groups to participate in this project. This GOALI project aims to break ground for fundamental research on understanding the reaction mechanism in the novel, high-energy density and low polysulfide shuttling sodium-sulfur battery system (Na/(O2)-S) to further improve the electrochemical performance of the system and enable optimal battery design in industry-relevant operating condition. This goal will be achieved by three objectives: (1) To understand the reaction pathway of the Na-(O2)-S electrode in Na/(O2)-S battery by identifying the intermediate and final reaction products by in-situ experimental characterization. (2) To understand the reaction kinetics by investigating interfacial kinetics and nucleation and growth rate of the discharge products during the electrochemical reactions in the Na/(O2)-S system. (3) Evaluate the performance of Na/(O2)-S battery system under industry-relevant settings. These studies will advance the knowledge and understanding of the thermodynamics and kinetics of metal-oxygen-polysulfide electrochemical reactions at room temperature in both solution and solid precipitation regions. The insight gained here will thus address critical needs in the development of the high-energy density battery using abundant materials and lay foundation for future research in this area.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对全球能源供应和二氧化碳排放的担忧促使人们对储能技术进行深入研究,以促进可再生能源的增长和整合,如用于电力运输和电网的风能和太阳能。电化学电池系统是最有前途的储能技术,将改变这些行业。然而,现有的锂离子电池技术不太可能满足能量密度和成本要求。 此外,它们的推广和更广泛的采用受到资源供应的限制。因此,需要使用丰富和低成本材料的新的高能量密度电池系统来应对这些挑战。研究人员与Saft America合作,提出了一种高能量密度和低多硫化物穿梭钠硫电池,该电池利用了钠、硫和氧等丰富的元素。此外,这项新技术将在单个电化学系统中协同结合多个反应。高能量密度和低成本钠硫电池技术的发展可能对国家的能源安全产生变革性影响。这里开发的实用,可扩展和具有成本效益的电池技术可以使电池技术在材料供应链资源有限的情况下更广泛地应用于运输和电网。通过与Saft America合作,该项目将加强学术界和工业界之间的伙伴关系,并促进实验室发明向市场的转移。研究生和本科生将通过该项目接受研究和行业实习培训,并将利用机构资源从代表性不足的群体中招募学生参与该项目。该GOALI项目旨在为理解新型高能量密度和低多硫化物穿梭钠硫电池系统(Na/(O2)-S)中的反应机理进行基础研究,以进一步提高系统的电化学性能,并在行业相关的操作条件下实现最佳电池设计。本研究主要通过以下三个方面来实现:(1)通过原位实验表征确定Na/(O2)-S电池中Na-(O2)-S电极的反应中间产物和最终反应产物,了解Na/(O2)-S电极的反应途径。(2)通过研究Na/(O2)-S体系电化学反应过程中的界面动力学和放电产物的成核与生长速率,了解反应动力学。(3)评估Na/(O2)-S电池系统在行业相关设置下的性能。这些研究将推进在室温下在溶液和固体沉淀区域中的金属-氧-多硫化物电化学反应的热力学和动力学的知识和理解。因此,在此获得的见解将解决使用丰富材料开发高能量密度电池的关键需求,并为该领域的未来研究奠定基础。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zheng Li其他文献

Effect of Peak Value and Discharge Frequency of Electric Current Pulse on the Solidification Structure of Fe -1C -1.5Cr Bearing Steel
电流脉冲峰值和放电频率对Fe -1C -1.5Cr轴承钢凝固组织的影响
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Qijie Zhai;Jianhong Ma;LiXing Jia;Zheng Li;Jie Li;Yulai Gao
  • 通讯作者:
    Yulai Gao
First-principles investigation on the optoelectronic performance of Mg doped and Mg-Al co-doped ZnO
Mg掺杂及Mg-Al共掺杂ZnO光电性能的第一性原理研究
  • DOI:
    10.1016/j.matdes.2015.12.033
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Si Xiaodong;Liu Yongsheng;Lei Wei;Xu Juan;Du Wenlong;Lin Jia;Zhou Tao;Zheng Li
  • 通讯作者:
    Zheng Li
Surface Photovoltage and Electric Field‐Induced Surface Photovoltage Study on a Series of Lanthanide (III) Monoporphyrin Compounds
一系列镧系(III)单卟啉化合物的表面光电压和电场诱导表面光电压研究
  • DOI:
    10.1080/15533170701301439
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Miao Yu;Zheng Li;Guo
  • 通讯作者:
    Guo
Nearest-Regularized Subspace Classification for PolSAR Imagery Using Polarimetric Feature Vector and Spatial Information
使用偏振特征向量和空间信息对 PolSAR 图像进行最近正则化子空间分类
  • DOI:
    10.3390/rs9111114
  • 发表时间:
    2017-11
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Fan Zhang;Jun Ni;Qiang Yin;Wei Li;Zheng Li;Yifan Liu;Wen Hong
  • 通讯作者:
    Wen Hong
Axisymmetric fold-combination laser resonator
轴对称折叠组合激光谐振腔
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Yude Li;Jinglun Liu;Mei Chen;Junping Guo;Zheng Li;Shenggen Ju
  • 通讯作者:
    Shenggen Ju

Zheng Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zheng Li', 18)}}的其他基金

Collaborative Research: Understanding the Reversible Formation of Sodium Hydrosulfide in Hybrid Electrolytes for High-Energy Density Storage
合作研究:了解用于高能量密度存储的混合电解质中硫氢化钠的可逆形成
  • 批准号:
    2208840
  • 财政年份:
    2022
  • 资助金额:
    $ 31.57万
  • 项目类别:
    Standard Grant
NSF Postdoctoral Fellowship in Biology FY 2021: The role of dosage balance in duplicate gene retention
2021 财年 NSF 生物学博士后奖学金:剂量平衡在重复基因保留中的作用
  • 批准号:
    2109306
  • 财政年份:
    2022
  • 资助金额:
    $ 31.57万
  • 项目类别:
    Fellowship Award
SBIR Phase I: Identifying Toxicity Pathways
SBIR 第一阶段:确定毒性途径
  • 批准号:
    0610784
  • 财政年份:
    2006
  • 资助金额:
    $ 31.57万
  • 项目类别:
    Standard Grant

相似国自然基金

度量测度空间上基于狄氏型和p-energy型的热核理论研究
  • 批准号:
    QN25A010015
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Room Temperature High Energy Density Sodium-Sulfur Batteries
室温高能量密度钠硫电池
  • 批准号:
    DP240101548
  • 财政年份:
    2024
  • 资助金额:
    $ 31.57万
  • 项目类别:
    Discovery Projects
Development of a long-term thermochemical energy storage system with simutaneous high heat power and storage density by utilizating a moving bed reactor based on nano coated salt hydrates
利用基于纳米涂层盐水合物的移动床反应器开发同时具有高热功率和存储密度的长期热化学储能系统
  • 批准号:
    24K08316
  • 财政年份:
    2024
  • 资助金额:
    $ 31.57万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SBIR Phase II: High Energy-Density Hydrogen-Halogen Flow Batteries for Energy Storage
SBIR第二阶段:用于储能的高能量密度氢卤液流电池
  • 批准号:
    2136304
  • 财政年份:
    2023
  • 资助金额:
    $ 31.57万
  • 项目类别:
    Cooperative Agreement
PFI-TT: Fabrication of Solid Electrolyte Thin Films with Plasma Processing to Enable Solid State Batteries with High Energy Density
PFI-TT:通过等离子体处理制造固体电解质薄膜,以实现高能量密度的固态电池
  • 批准号:
    2234636
  • 财政年份:
    2023
  • 资助金额:
    $ 31.57万
  • 项目类别:
    Standard Grant
Efficient Analysis of High-Resolution Imaging Data in High-Energy Density Physics
高能量密度物理中高分辨率成像数据的高效分析
  • 批准号:
    2888287
  • 财政年份:
    2023
  • 资助金额:
    $ 31.57万
  • 项目类别:
    Studentship
SBIR Phase I: Coated metal foils for high energy density, low-cost, lithium-ion batteries
SBIR 第一阶段:用于高能量密度、低成本锂离子电池的涂层金属箔
  • 批准号:
    2303614
  • 财政年份:
    2023
  • 资助金额:
    $ 31.57万
  • 项目类别:
    Standard Grant
Energy Density and Snacking understanding of the drivers of satiation and satisfaction when mixing foods with different energy density
能量密度和零食 了解混合不同能量密度的食物时饱腹感和满意度的驱动因素
  • 批准号:
    BB/X512096/1
  • 财政年份:
    2023
  • 资助金额:
    $ 31.57万
  • 项目类别:
    Training Grant
Development of Electrolytes with High Energy Density for Redox-Flow Batteries Based on Chemistry of Solubility
基于溶解度化学的氧化还原液流电池高能量密度电解质的开发
  • 批准号:
    23K04918
  • 财政年份:
    2023
  • 资助金额:
    $ 31.57万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Inertial Fusion Energy: Optimising High Energy Density Physics in Complex Geometries
惯性聚变能:优化复杂几何形状中的高能量密度物理
  • 批准号:
    EP/X025373/1
  • 财政年份:
    2023
  • 资助金额:
    $ 31.57万
  • 项目类别:
    Research Grant
Energy density and Snacking: Understanding the drivers of satiation and satisfaction when mixing foods with different energy densities
能量密度和零食:了解混合不同能量密度的食物时饱腹感和满足感的驱动因素
  • 批准号:
    2835367
  • 财政年份:
    2023
  • 资助金额:
    $ 31.57万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了