Inertial Fusion Energy: Optimising High Energy Density Physics in Complex Geometries
惯性聚变能:优化复杂几何形状中的高能量密度物理
基本信息
- 批准号:EP/X025373/1
- 负责人:
- 金额:$ 782.6万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Climate change driven by burning coal or oil, and fuel supply insecurity caused by international conflicts highlight the need to develop safer, cleaner ways of generating electrical power. Renewables and nuclear fission both play an important role here, but each has limitations. Wind and waves are subject to natural variations, while fission reactors require careful, long term management of dangerous waste.One attractive alternative for the future is fusion energy, harnessing the same nuclear reactions that power the sun. To create fusion on Earth we "burn" an isotope of hydrogen (deuterium, 0.03% of the mass in the world's oceans), a vast, easy to access fuel supply. The deuterium is combined with tritium (another hydrogen isotope) and under extremes of temperature, pressure and density these can fuse to form Helium and in doing so release huge amounts of energy. The reaction generates no greenhouse gasses, and is relatively clean with very short lived, easy-to-handle waste material, however the conditions required to create fusion are very difficult to make. There are several methods for getting to Fusion conditions, including using large magnets to trap a hot plasma over long timescales, or utilising an array of lasers to suddenly heat and compress a small pellet of frozen fusion fuel, causing it to implode in a spherically symmetric fashion. This last method, called Inertial Confinement Fusion, recently had a breakthrough in results, with the world's most complex, expensive laser, being utilised to heat a precisely engineered fusion target to the point of causing 'ignition' where heat generated within the target was briefly enough to sustain the continued burn of fusion fuel. However, with present laser technology it would be challenging to scale such a method to energy production.In new experiments at First Light Fusion, a company based in Oxfordshire, a different approach to fusion is being developed. Instead of lasers hitting the fuel capsule from all sides, a single high speed projectile is used to hit a specially machined metal and plastic target from just one side. Inside the target, shockwaves from the impact of the projectile are shaped and concentrated, compressing and heating an enclosed volume of Deuterium-Tritium fuel. In April 2022 First Light Fusion released their first results, demonstrating that this method provides a promising route that warrants further research.Our project brings together three universities, Imperial College, Oxford and York in partnership with First Light Fusion and a new company dedicated to AI techniques - Machine Discovery - to form a Partnership that will explore the challenges in the First Light Fusion approach. Working together we will study the flow of heat, matter and radiation in First Light Fusion's targets which have complex interfaces between vastly different material pressures, from over a billion atmospheres to room pressure, and material temperatures, from millions of 0C to those lower than liquid nitrogen. By exploring these exciting conditions and learning how heat, radiation and matter flow in the targets, we hope to be able to better simulate how these targets behave. This will enable First Light Fusion to design much higher yield experiments that could lead the way to 'on grid' power production. The high yield experiments will require projectiles moving at many 10s of km/s which will be achieved by using huge bursts of electrical current - 50 million amperes! - and the magnetic fields this creates to launch large strips of metal to these ultra-high velocities. The £500million generator to make such high currents is presently being designed and will be built in the UK, helping our nation maintain its position as a world leader in fusion technology and industry.
燃烧煤炭或石油导致的气候变化,以及国际冲突造成的燃料供应不安全,突出表明需要开发更安全,更清洁的发电方式。可再生能源和核裂变在这方面都发挥着重要作用,但都有局限性。风和海浪会受到自然变化的影响,而裂变反应堆需要对危险废物进行仔细的长期管理。未来一个有吸引力的替代能源是聚变能源,利用与太阳相同的核反应。为了在地球上产生核聚变,我们“燃烧”氢的同位素(氘,占世界海洋质量的0.03%),这是一种巨大的,容易获得的燃料供应。氘与氚(另一种氢同位素)结合,在极端的温度,压力和密度下,它们可以融合形成氦,并在此过程中释放出巨大的能量。该反应不产生温室气体,并且相对清洁,具有非常短的寿命,易于处理的废料,但是产生聚变所需的条件非常难以实现。有几种方法可以达到聚变条件,包括使用大型磁铁在长时间内捕获热等离子体,或者利用激光阵列突然加热和压缩一小块冷冻聚变燃料,使其以球对称的方式内爆。最后一种方法,称为惯性约束聚变,最近在结果上取得了突破,世界上最复杂,最昂贵的激光器,被用来加热一个精确设计的聚变目标,以引起“点火”,其中目标内产生的热量足以维持聚变燃料的持续燃烧。然而,以目前的激光技术,将这种方法推广到能源生产中是具有挑战性的。在位于牛津郡的First Light Fusion公司的新实验中,正在开发一种不同的聚变方法。不是激光从各个方向击中燃料舱,而是使用单个高速射弹从一侧击中特殊加工的金属和塑料目标。在目标内部,弹丸撞击产生的冲击波被成形和集中,压缩和加热封闭体积的氘氚燃料。2022年4月,First Light Fusion发布了他们的第一个结果,证明这种方法提供了一种有前途的路线,值得进一步研究。我们的项目汇集了三所大学,帝国理工学院,牛津大学和约克大学,与First Light Fusion和一家致力于人工智能技术的新公司-机器发现-合作,形成一个合作伙伴关系,将探索First Light Fusion方法中的挑战。我们将共同研究First Light Fusion目标中的热量,物质和辐射的流动,这些目标具有非常不同的材料压力之间的复杂界面,从超过十亿个大气压到室内压力,以及材料温度,从数百万摄氏度到低于液氮。通过探索这些令人兴奋的条件并了解热量,辐射和物质如何在目标中流动,我们希望能够更好地模拟这些目标的行为。这将使First Light Fusion能够设计出更高产量的实验,从而为“并网”发电开辟道路。高当量的实验将需要以每秒数十公里的速度移动的射弹,这将通过使用巨大的电流爆发来实现-5000万安培!- 以及由此产生的磁场将大块金属带以超高速度发射出去。这台耗资5亿英镑的发电机目前正在设计中,并将在英国建造,帮助我们的国家保持其在聚变技术和工业方面的世界领先地位。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Simon Bland其他文献
Expectations of how student views on experimental physics develop during an undergraduate degree
对学生在本科学位期间对实验物理的看法如何发展的期望
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
M. F. Fox;Simon Bland;S. Mangles;James McGinty - 通讯作者:
James McGinty
Novel Experiment for Scaled Power Flow Studies Towards Next-Generation Pulsed Power
针对下一代脉冲功率的缩放功率流研究的新颖实验
- DOI:
10.1109/ppc47928.2023.10310679 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
T. Mundy;Simon Bland;Sergey Lebedev;J. Chittenden;K. Marrow;L. Suttle;J. Halliday;Charles Rose - 通讯作者:
Charles Rose
Guiding Health Resource Allocation: Using Population Net Health Benefit to Align Disease Burden with Cost Effectiveness for Informed Decision Making
- DOI:
10.1007/s40258-025-00964-x - 发表时间:
2025-04-09 - 期刊:
- 影响因子:3.300
- 作者:
Megha Rao;Simon Walker;Karl Claxton;Simon Bland;Jessica Ochalek;Andrew Phillips;Mark Sculpher;Paul Revill - 通讯作者:
Paul Revill
Simon Bland的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Simon Bland', 18)}}的其他基金
Wire Array Z-Pinch Driven High Energy Density Physics Experiments
线阵列 Z 箍缩驱动的高能量密度物理实验
- 批准号:
EP/E053661/1 - 财政年份:2007
- 资助金额:
$ 782.6万 - 项目类别:
Fellowship
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
基于多模态融合Dense-Fusion深度学习网络预测原发性胃肠道间质瘤术后复发风险及靶向治疗获益性的研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
若干辫子fusion范畴的弱群型性质和分类
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
急性B淋巴细胞白血病致癌蛋白MEF2D-fusion的发病机制研究
- 批准号:81970132
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
靶向pre-fusion F蛋白的咖啡酸类抗呼吸道合胞病毒活性成分的结构优化及作用机制研究
- 批准号:81973190
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
骨肉瘤中一个新Fusion蛋白的作用、机制和临床意义
- 批准号:81502512
- 批准年份:2015
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
骨肉瘤中一个新Fusion蛋白分泌到exosome中的机制、功能及其临床意义
- 批准号:81530081
- 批准年份:2015
- 资助金额:273.0 万元
- 项目类别:重点项目
活体动物线粒体biogenesis、fission及fusion对肝脏再生中能量供应影响机制的研究
- 批准号:81470878
- 批准年份:2014
- 资助金额:73.0 万元
- 项目类别:面上项目
线粒体fission/fusion对脑缺血后细胞能量代谢及兴奋性氨基酸释放的影响
- 批准号:81000487
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Fusion界面模型的产品创新设计研究
- 批准号:50375045
- 批准年份:2003
- 资助金额:21.0 万元
- 项目类别:面上项目
相似海外基金
Ion-atom collision data for fusion energy, hadron therapy and astrophysics
用于聚变能、强子治疗和天体物理学的离子原子碰撞数据
- 批准号:
DP240101210 - 财政年份:2024
- 资助金额:
$ 782.6万 - 项目类别:
Discovery Projects
Advanced shield materials for compact fusion energy
用于紧凑聚变能源的先进屏蔽材料
- 批准号:
LP220100031 - 财政年份:2023
- 资助金额:
$ 782.6万 - 项目类别:
Linkage Projects
In one zeptosecond: quantifying energy dissipation in heavy element fusion
一泽秒:量化重元素聚变中的能量耗散
- 批准号:
DE230100197 - 财政年份:2023
- 资助金额:
$ 782.6万 - 项目类别:
Discovery Early Career Researcher Award
Irradiation damage of shielding materials for fusion energy
聚变能屏蔽材料的辐照损伤
- 批准号:
2891964 - 财政年份:2023
- 资助金额:
$ 782.6万 - 项目类别:
Studentship
Conference: CET: Workforce Accelerator for Fusion Energy Technology Development
会议:CET:聚变能源技术开发的劳动力加速器
- 批准号:
2346410 - 财政年份:2023
- 资助金额:
$ 782.6万 - 项目类别:
Standard Grant
Characterisation of low activation shielding materials for fusion energy
聚变能低活化屏蔽材料的表征
- 批准号:
2895377 - 财政年份:2023
- 资助金额:
$ 782.6万 - 项目类别:
Studentship
Characterising radiation damage in shielding materials for fusion energy
表征聚变能屏蔽材料的辐射损伤
- 批准号:
2825148 - 财政年份:2022
- 资助金额:
$ 782.6万 - 项目类别:
Studentship
The digital twin of fusion energy components
聚变能源组件的数字孪生
- 批准号:
2601058 - 财政年份:2021
- 资助金额:
$ 782.6万 - 项目类别:
Studentship
Research to enable rapid development of High Temperature Superconducting magnets for fusion energy and other applications.
研究促进快速开发用于聚变能和其他应用的高温超导磁体。
- 批准号:
MR/T043199/1 - 财政年份:2021
- 资助金额:
$ 782.6万 - 项目类别:
Fellowship
SBIR Phase II: A Plasma Heat Engine for Efficient Production of Fusion Energy
SBIR 第二阶段:用于高效生产聚变能的等离子体热机
- 批准号:
2110396 - 财政年份:2021
- 资助金额:
$ 782.6万 - 项目类别:
Cooperative Agreement