NSF-BSF: Rotating Ultracold Fermi Gases in a Box

NSF-BSF:在盒子中旋转超冷费米气体

基本信息

  • 批准号:
    2110303
  • 负责人:
  • 金额:
    $ 58.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

The behavior of fluids in rotating containers has long been a crucial topic in both fundamental and applied hydrodynamics, including in the study of turbulence. When everyday – classical - fluids are slowly set in rotation, they display a well-known progressive rotation motion. The response to rotation of quantum fluids is strikingly different. Below a certain rotation frequency, these fluids do not respond to the rotation of their container; if they are rotated sufficiently fast, swirling eddies called vortices appear. Those vortices have distinctly quantum properties, and are key to understanding the hydrodynamics of quantum fluids. In particular, the turbulence of quantum fluids is dominated by the interactions between vortices, and by the interactions between excitations of vortices and sound waves. One of the main motivations in studying turbulence in quantum fluids is that, because of the discrete well-defined nature of quantum vortices, it is more fundamental than the more common turbulence of classical fluids and could provide a blueprint for the understanding of the latter. This project will tackle this topic by using gases of ultracold atoms as quantum fluids. These gases will be trapped using boxes made of light, carved using programmable electro-optic devices. Exploiting these devices’ fast real-time characteristics, the ultracold gases will be set in rotation and the nucleation of quantized vortices and the excitations of these vortices will be studied. The ability to project nearly arbitrary “movies” on quantum matter will herald a new stage in quantum control and provide an additional step towards programmable quantum simulation. This project will support the training of two graduate students to modern techniques in atomic physics and the versatile control of quantum matter with light.Uniform quantum gases have recently proven to be an exciting new class of quantum fluids, with distinct advantages. This project will combine these novel uniform gases and real-time control of the atom traps to study aspects of superfluidity in textbook settings. This project will use optical-box trapped gases to study the onset of superfluidity in strongly interacting quantum fluids and the collective excitations of vortex filaments. Despite extensive experimental and theoretical efforts, several fundamental issues about superfluidity remain outstanding. One such equilibrium problem is the relation between superfluid density, the order parameter and the condensed fraction in a strongly interacting superfluid. A second, out of equilibrium, example is the problem of the forces acting on a vortex. Those forces have crucial consequences on the mutual friction between the superfluid and normal components of quantum fluids and on the mass of a vortex. The calculation of such forces is notably controversial. This project will investigate both the regime of sub-critical and supercritical rotation. Off-equilibrium three-dimensional single-vortex states will be produced and used to investigate problems of the inertial mass of a vortex and the nature of various collective excitations of vortex filaments. Numerical simulations of the Gross-Pitaveskii and the Bogoliubov-de Gennes equations will guide the experiments by testing rotation protocols in optical boxes as well as mechanisms to excite and probe the collective excitations of the vortices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
流体在旋转容器中的行为一直是基础流体力学和应用流体力学的重要课题,包括湍流研究。当日常-经典-流体慢慢旋转时,它们显示出众所周知的渐进旋转运动。量子流体对旋转的反应是惊人的不同。低于一定的旋转频率,这些流体不会对容器的旋转做出反应;如果它们旋转得足够快,就会出现称为漩涡的漩涡。这些涡旋具有明显的量子特性,是理解量子流体流体力学的关键。特别地,量子流体的湍流由涡旋之间的相互作用以及涡旋和声波的激发之间的相互作用主导。研究量子流体中湍流的主要动机之一是,由于量子涡旋的离散定义良好的性质,它比经典流体中更常见的湍流更基本,并且可以为理解后者提供蓝图。该项目将通过使用超冷原子气体作为量子流体来解决这个问题。这些气体将被用可编程电光设备雕刻的光盒捕获。利用这些设备的快速实时特性,超冷气体将被设置在旋转和量子化涡旋的成核和这些涡旋的激发将被研究。在量子物质上投射几乎任意的“电影”的能力将预示着量子控制的新阶段,并为可编程量子模拟提供了额外的一步。该项目将支持两名研究生的原子物理学现代技术和用光控制量子物质的多功能培训。均匀量子气体最近被证明是一类令人兴奋的新量子流体,具有独特的优势。这个项目将结合联合收割机这些新颖的均匀气体和实时控制的原子陷阱,研究方面的超流在教科书设置。本计画将利用光箱捕获气体来研究强相互作用量子流体中超流性的开始以及涡丝的集体激发。尽管有大量的实验和理论研究,关于超流性的几个基本问题仍然悬而未决。其中一个平衡问题是强相互作用超流中超流密度、序参量和凝聚分数之间的关系。第二个不平衡的例子是作用在旋涡上的力的问题。这些力对超流体和量子流体的正常成分之间的相互摩擦以及对涡旋的质量有着至关重要的影响。这种力量的计算是有争议的。这个项目将调查两个制度的亚临界和超临界旋转。非平衡三维单涡状态将被生产和用于调查的问题的惯性质量的一个漩涡和性质的各种集体激励的涡丝。Gross-Pitchikii和Bogoliubov-de Gennes方程的数值模拟将通过测试光学盒中的旋转协议以及激发和探测涡旋集体激发的机制来指导实验。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stability of the Repulsive Fermi Gas with Contact Interactions
具有接触相互作用的排斥费米气体的稳定性
  • DOI:
    10.1103/physrevlett.129.203402
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Ji, Yunpeng;Schumacher, Grant L.;Assumpção, Gabriel G. T.;Chen, Jianyi;Mäkinen, Jere T.;Vivanco, Franklin J.;Navon, Nir
  • 通讯作者:
    Navon, Nir
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nir Navon其他文献

Experimental and numerical studies of a turbulent cascade in a 3D Bose gas
3D Bose 气体中湍流级联的实验和数值研究
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    藤本和也;坪田誠;Christoph Eigen;Jinyi Zhang;Raphael Lopes;Nir Navon;Robert Smith;Zoran Hadzibabic
  • 通讯作者:
    Zoran Hadzibabic

Nir Navon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nir Navon', 18)}}的其他基金

CAREER: Quantum mechanics far from equilibrium: Matter-wave turbulence
职业:远离平衡的量子力学:物质波湍流
  • 批准号:
    1945324
  • 财政年份:
    2020
  • 资助金额:
    $ 58.82万
  • 项目类别:
    Continuing Grant

相似国自然基金

枯草芽孢杆菌BSF01降解高效氯氰菊酯的种内群体感应机制研究
  • 批准号:
    31871988
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
基于掺硼直拉单晶硅片的Al-BSF和PERC太阳电池光衰及其抑制的基础研究
  • 批准号:
    61774171
  • 批准年份:
    2017
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
B细胞刺激因子-2(BSF-2)与自身免疫病的关系
  • 批准号:
    38870708
  • 批准年份:
    1988
  • 资助金额:
    3.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321481
  • 财政年份:
    2024
  • 资助金额:
    $ 58.82万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321480
  • 财政年份:
    2024
  • 资助金额:
    $ 58.82万
  • 项目类别:
    Continuing Grant
NSF-BSF: Many-Body Physics of Quantum Computation
NSF-BSF:量子计算的多体物理学
  • 批准号:
    2338819
  • 财政年份:
    2024
  • 资助金额:
    $ 58.82万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
  • 批准号:
    2333889
  • 财政年份:
    2024
  • 资助金额:
    $ 58.82万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
  • 批准号:
    2333888
  • 财政年份:
    2024
  • 资助金额:
    $ 58.82万
  • 项目类别:
    Continuing Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 58.82万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134594
  • 财政年份:
    2024
  • 资助金额:
    $ 58.82万
  • 项目类别:
    Standard Grant
NSF-BSF Combinatorial Set Theory and PCF
NSF-BSF 组合集合论和 PCF
  • 批准号:
    2400200
  • 财政年份:
    2024
  • 资助金额:
    $ 58.82万
  • 项目类别:
    Standard Grant
NSF-BSF: CDS&E: Tensor Train methods for Quantum Impurity Solvers
NSF-BSF:CDS
  • 批准号:
    2401159
  • 财政年份:
    2024
  • 资助金额:
    $ 58.82万
  • 项目类别:
    Continuing Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
  • 批准号:
    2420942
  • 财政年份:
    2024
  • 资助金额:
    $ 58.82万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了