Spin Squeezing and Entanglement in Bose-Einstein Condensates
玻色-爱因斯坦凝聚中的自旋挤压和纠缠
基本信息
- 批准号:2110467
- 负责人:
- 金额:$ 65.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research will advance the state of the art in quantum-enhanced metrology, in which measurements of technically important quantities such as time and frequency, electro-magnetic fields and inertial forces are made with sensitivities approaching the limits set by fundamental quantum theory. Technological off-shoots of this research could lead to precision sensors for navigation and magnetometry, atomic clocks and emerging quantum technologies, including quantum computing, quantum simulation and quantum communication. The primary activity of the research is experimental investigation of ultracold atoms cooled to near absolute zero temperature where they form a uniquely quantum coherent state of matter known as a Bose-Einstein condensate. The experiments are performed by graduate students and undergraduate students who gain important expertise in the advanced laboratory techniques and quantum science. Additionally, the research is disseminated to a broad audience by incorporating results into classroom lectures, maintaining a dynamic website, hosting laboratory tours, making visits to local schools and facilitating popular press releases about the work. Specifically, this research project will investigate quantum squeezed and entangled states in atomic Bose-Einstein condensates with internal spin degrees of freedom. The investigations employ rubidium atomic Bose-Einstein condensates (BEC) confined in optical traps. The dynamic evolution of the internal spin degrees of freedom of the ensemble of atoms results from spin-dependent collisional interactions that generate quantum correlated or entangled states of the spin ensembles. This quantum system is simple enough so that both the ground state and evolution of non-equilibrium excited states can be quantitatively compared to theoretical predictions. Yet it offers a rich array of phenomena including spontaneous symmetry-breaking, entangled states and non-trivial geometric phases. The experimental platform provides a powerful combination of tools to explore important topics including quantum critical phenomena and the generation of massively entangled states. A common theme of the research is the role of finite size effects that are manifested in the quantum fluctuations of the system, and these studies will provide insight into fundamental principles of many-particle quantum mechanics that are important to many areas of physics. This work will build upon recent investigations of quantum spin dynamics that include the measurement of spin-nematic squeezing, demonstration of dynamical stabilization and parametric excitation, high precision studies of a second order quantum phase transition, and exploration of Kibble-Zurek universality in excitations across a quantum critical point.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项研究将推进量子增强计量学的最新发展,在量子增强计量学中,对时间和频率、电磁场和惯性力等技术上重要的量进行测量,其灵敏度接近基本量子理论设定的极限。这项研究的技术分支可能会产生用于导航和磁力测量的精密传感器、原子钟和新兴的量子技术,包括量子计算、量子模拟和量子通信。该研究的主要活动是对冷却到接近绝对零度的超冷原子进行实验研究,在那里它们形成了一种独特的量子相干态,称为玻色-爱因斯坦凝聚态。实验由研究生和本科生进行,他们在先进的实验室技术和量子科学方面获得了重要的专业知识。此外,还通过将研究结果纳入课堂讲座、维持一个动态网站、主办实验室图尔斯参观、访问当地学校和促进有关这项工作的大众新闻稿等方式,向广大受众传播研究成果。具体而言,本研究计划将研究具有内部自旋自由度的原子玻色-爱因斯坦凝聚体中的量子压缩和纠缠态。该研究使用限制在光阱中的铷原子玻色-爱因斯坦凝聚体(BEC)。原子系综内部自旋自由度的动态演化是由自旋相关的碰撞相互作用产生的,碰撞相互作用产生自旋系综的量子关联或纠缠态。这个量子系统是足够简单的,因此基态和非平衡激发态的演化可以定量地与理论预测进行比较。 然而,它提供了丰富的现象,包括自发破缺,纠缠态和非平凡的几何相位。该实验平台提供了一个强大的工具组合来探索重要的主题,包括量子临界现象和大规模纠缠态的产生。研究的一个共同主题是有限尺寸效应在系统量子涨落中的作用,这些研究将深入了解对许多物理领域都很重要的多粒子量子力学的基本原理。这项工作将建立在量子自旋动力学的最新研究基础上,包括自旋向列压缩的测量、动力学稳定和参数激发的演示、二阶量子相变的高精度研究,和Kibble的探索-Zurek在量子临界点激发的普遍性。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的学术价值和更广泛的影响审查标准。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fast Generation of Time-Stationary Spin-1 Squeezed States by Nonadiabatic Control
- DOI:10.1103/prxquantum.3.010328
- 发表时间:2021-09
- 期刊:
- 影响因子:9.7
- 作者:Lin Xin;M. Chapman;T. Kennedy
- 通讯作者:Lin Xin;M. Chapman;T. Kennedy
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Chapman其他文献
Single‐institution experience of adjuvant 5‐fluorouracil‐based chemotherapy for stage III colon cancer
基于5-氟尿嘧啶的辅助化疗治疗III期结肠癌的单机构经验
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Peter Gibbs;D. Handolias;S. McLaughlin;Michael Chapman;J. Johns;I. Faragher - 通讯作者:
I. Faragher
Stability of approximate group actions: uniform and probabilistic
近似群动作的稳定性:均匀和概率
- DOI:
10.4171/jems/1267 - 发表时间:
2020 - 期刊:
- 影响因子:2.6
- 作者:
Oren Becker;Michael Chapman - 通讯作者:
Michael Chapman
Expander Graphs — Both Local and Global
扩展图——本地和全局
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:1.1
- 作者:
Michael Chapman;N. Linial;Y. Peled - 通讯作者:
Y. Peled
Lead Essay—Viral Trajectories
- DOI:
10.1007/s11673-023-10321-z - 发表时间:
2024-01-02 - 期刊:
- 影响因子:1.500
- 作者:
Paul Komesaroff;Ross Upshur;Edwina Light;Ian Kerridge;Michael Chapman - 通讯作者:
Michael Chapman
AFRL AM Modeling Challenge Series: Challenge 2 Data Package
AFRL AM 建模挑战系列:挑战 2 数据包
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
M. Groeber;E. Schwalbach;S. Donegan;M. Uchic;Michael Chapman;P. Shade;W. Musinski;Jonathan D. Miller;T. Turner;D. Sparkman;Marie E. Cox - 通讯作者:
Marie E. Cox
Michael Chapman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Chapman', 18)}}的其他基金
Exploring New Frontiers in Spin-1 Dynamics, Geometry and Metrology
探索 Spin-1 动力学、几何和计量学的新领域
- 批准号:
1806315 - 财政年份:2018
- 资助金额:
$ 65.51万 - 项目类别:
Standard Grant
Quantum Control and Entanglement in a Strongly Interacting Spin Ensemble
强相互作用自旋系综中的量子控制和纠缠
- 批准号:
1506294 - 财政年份:2015
- 资助金额:
$ 65.51万 - 项目类别:
Standard Grant
Quantum Many-Body Spin Dynamics of a Bose-Einstein Condensate
玻色-爱因斯坦凝聚态的量子多体自旋动力学
- 批准号:
1208828 - 财政年份:2012
- 资助金额:
$ 65.51万 - 项目类别:
Continuing Grant
Spinor Bose-Einstein Condensates in Optical Traps
光学陷阱中的旋量玻色-爱因斯坦凝聚
- 批准号:
0605049 - 财政年份:2006
- 资助金额:
$ 65.51万 - 项目类别:
Continuing Grant
Collaborative Research: Photonic Quantum Networking of Trapped Ion Qubits
合作研究:俘获离子量子位的光子量子网络
- 批准号:
0601244 - 财政年份:2006
- 资助金额:
$ 65.51万 - 项目类别:
Standard Grant
Investigations of All-Optical Bose Condensates
全光学玻色凝聚体的研究
- 批准号:
0303013 - 财政年份:2003
- 资助金额:
$ 65.51万 - 项目类别:
Continuing Grant
ITR: Cavity QED with Trapped Ions
ITR:带有捕获离子的腔 QED
- 批准号:
0326315 - 财政年份:2003
- 资助金额:
$ 65.51万 - 项目类别:
Continuing Grant
Crystallographic Structure Determination/Refinement Using Atomic Electron Density Functions, and Optimization of Appropriate Force Fields for Analysis
使用原子电子密度函数确定/细化晶体结构,并优化用于分析的适当力场
- 批准号:
9808098 - 财政年份:1998
- 资助金额:
$ 65.51万 - 项目类别:
Continuing Grant
相似海外基金
Squeezing active matter: Exploring low-dimensional properties in collective motion
挤压活性物质:探索集体运动的低维特性
- 批准号:
23H01141 - 财政年份:2023
- 资助金额:
$ 65.51万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CSR: Small: Squeezing More Performance Out of Distributed Storage Systems With a Transparent Ordering-Control Layer
CSR:小:通过透明排序控制层从分布式存储系统中榨取更多性能
- 批准号:
2327609 - 财政年份:2023
- 资助金额:
$ 65.51万 - 项目类别:
Standard Grant
Squeezing through the embryo:Dissecting nuclear mechanics during embryonic cell migration
挤压胚胎:剖析胚胎细胞迁移过程中的核力学
- 批准号:
BB/W017482/1 - 财政年份:2023
- 资助金额:
$ 65.51万 - 项目类别:
Research Grant
Exploration of non-linear magnonics and magnon squeezing by magnetization state tomography
磁化态层析成像对非线性磁振子和磁振子压缩的探索
- 批准号:
22K14584 - 财政年份:2022
- 资助金额:
$ 65.51万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Microfluidic cell squeezing platform for the transdifferentiation of somatic cells for efficient generation of a cell replacement therapy for Parkinsons Disease
用于体细胞转分化的微流控细胞挤压平台,可有效生成帕金森病的细胞替代疗法
- 批准号:
10483308 - 财政年份:2022
- 资助金额:
$ 65.51万 - 项目类别:
Development of frequency dependent squeezing technique for sensitivity improvement of gravitational wave detector KAGRA
开发频率相关挤压技术以提高引力波探测器 KAGRA 的灵敏度
- 批准号:
18F18024 - 财政年份:2018
- 资助金额:
$ 65.51万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Broadband quantum noise reduction via EPR squeezing
通过 EPR 压缩降低宽带量子噪声
- 批准号:
18H01235 - 财政年份:2018
- 资助金额:
$ 65.51万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
NSF-BSF: Squeezing the Optical Frequency Comb: Applications to Quantum Computing and Quantum Measurement
NSF-BSF:挤压光频梳:在量子计算和量子测量中的应用
- 批准号:
1820882 - 财政年份:2018
- 资助金额:
$ 65.51万 - 项目类别:
Continuing Grant
Investigation of movement phenomena for the squeezing-out landslide
挤压滑坡运动现象研究
- 批准号:
16K12857 - 财政年份:2016
- 资助金额:
$ 65.51万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Squeezing light using non-linear optics on silicon chip
在硅芯片上使用非线性光学压缩光
- 批准号:
1804812 - 财政年份:2016
- 资助金额:
$ 65.51万 - 项目类别:
Studentship