Quantum Control and Entanglement in a Strongly Interacting Spin Ensemble

强相互作用自旋系综中的量子控制和纠缠

基本信息

  • 批准号:
    1506294
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

This research will investigate quantum phase transitions using ultracold atomic gases cooled close to absolute zero temperature. Phase transitions play important roles in many areas of physics including cosmology, particle physics and condensed matter. The freezing of water to ice provides a familiar example: the motion of water molecules undergo a phase transition upon crystallization as the temperature falls below the freezing point. In cosmology, it is conjectured that the large scale structure of the universe is a vestige of defects (e.g. "cosmic strings") formed as the Universe cooled through a phase transition (via the so-called "Higgs mechanism") shortly after the Big Bang. This research will explore quantum phase transitions and associated phenomena in an unexplored regime at the opposite end of the temperature scale, close to absolute zero on the Kelvin temperature scale (or nearly 460 degrees below zero on the Fahrenheit temperature scale). The experiments will use ultracold atomic Bose-Einstein condensates (a quantum state of matter that forms at extremely low temperatures) to explore phase transitions in which the behavior of the transition is determined by quantum effects rather than thermal effects. In addition to providing new insight to the fundamental quantum science of many-particle systems, these experiments have potential applications to quantum information science and to the development of new quantum sensors for inertial guidance and measurement of gravity and magnetic fields. This experimental research will study strongly interacting ensembles of spin-1 atoms in a Bose-Einstein condensate to explore the nature of quantum phase transitions in the neighborhood of the critical point and to investigate creation, control and characterization of non-classical highly entangled states of the ensembles. The investigations use small rubidium-87 atomic Bose-Einstein condensates containing just a single spin domain, such that the dynamic evolution occurs only in the internal spin degrees of freedom. These condensates feature a well-characterized Hamiltonian with a tunable quantum phase transition that allow exploration of both ferromagnetic and polar (nematic) ground states of the spins. The combination of an exactly solvable Hamiltonian with a quantum phase transition together with demonstrated dynamics in the quantum regime provide a unique combination of tools to explore important topics including high precision studies of a second order quantum phase transitions, exploration of excitations across a quantum critical point, and the generation of massively entangled states. A common theme in all of these studies is the role of finite size effects that manifest in the quantum fluctuations of the system. This research will provide insight into fundamental principles of many-particle quantum mechanics that are important to many areas of physics and will point the way to future explorations of quantum many-body spin systems including thermalization and ergodicity crossing a quantum phase transition, investigations of Hamiltonian quantum chaos and other non-linear phenomena, and finite temperature effects.
这项研究将使用冷却到接近绝对零度的超冷原子气体来研究量子相变。相变在宇宙学、粒子物理学和凝聚态物质等物理学的许多领域都发挥着重要作用。水冻结成冰提供了一个熟悉的例子:当温度福尔斯冰点以下时,水分子的运动在结晶时经历相变。在宇宙学中,宇宙的大尺度结构被认为是大爆炸后不久宇宙通过相变(通过所谓的希格斯机制)冷却时形成的缺陷(例如“宇宙弦”)的遗迹。这项研究将探索量子相变和相关现象在一个未探索的制度在另一端的温标,接近绝对零度的开尔文温标(或近460度低于零的华氏温标)。这些实验将使用超冷原子玻色-爱因斯坦凝聚(在极低温度下形成的物质量子态)来探索相变,其中相变的行为由量子效应而不是热效应决定。 除了为多粒子系统的基础量子科学提供新的见解外,这些实验还可能应用于量子信息科学以及开发用于惯性制导和重力和磁场测量的新量子传感器。这项实验研究将研究玻色-爱因斯坦凝聚体中自旋为1的原子的强相互作用系综,以探索临界点附近量子相变的性质,并研究系综的非经典高度纠缠态的产生,控制和表征。研究使用仅包含单个自旋域的小型铷-87原子玻色-爱因斯坦凝聚体,使得动态演化仅发生在内部自旋自由度中。这些凝聚体的特点是一个良好的特点与可调的量子相变,允许探索铁磁和极性(极化)自旋基态的哈密顿量。一个完全可解的哈密顿量与量子相变的结合,以及量子机制中的动力学,提供了一个独特的工具组合来探索重要的课题,包括高精度的研究二阶量子相变,探索量子临界点上的激发,以及产生大规模纠缠态。 所有这些研究中的一个共同主题是有限尺寸效应在系统量子涨落中的作用。 这项研究将深入了解多粒子量子力学的基本原理,这些原理对物理学的许多领域都很重要,并将为量子多体自旋系统的未来探索指明方向,包括量子相变的热化和遍历性,哈密顿量子混沌和其他非线性现象的研究,以及有限温度效应。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Chapman其他文献

Single‐institution experience of adjuvant 5‐fluorouracil‐based chemotherapy for stage III colon cancer
基于5-氟尿嘧啶的辅助化疗治疗III期结肠癌的单机构经验
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peter Gibbs;D. Handolias;S. McLaughlin;Michael Chapman;J. Johns;I. Faragher
  • 通讯作者:
    I. Faragher
Stability of approximate group actions: uniform and probabilistic
近似群动作的稳定性:均匀和概率
Expander Graphs — Both Local and Global
扩展图——本地和全局
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Michael Chapman;N. Linial;Y. Peled
  • 通讯作者:
    Y. Peled
Lead Essay—Viral Trajectories
  • DOI:
    10.1007/s11673-023-10321-z
  • 发表时间:
    2024-01-02
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Paul Komesaroff;Ross Upshur;Edwina Light;Ian Kerridge;Michael Chapman
  • 通讯作者:
    Michael Chapman
Stability of Homomorphisms, Coverings and Cocycles I: Equivalence
同态、覆盖和余循环的稳定性 I:等价
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Chapman;Alexander Lubotzky
  • 通讯作者:
    Alexander Lubotzky

Michael Chapman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Chapman', 18)}}的其他基金

Spin Squeezing and Entanglement in Bose-Einstein Condensates
玻色-爱因斯坦凝聚中的自旋挤压和纠缠
  • 批准号:
    2110467
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Exploring New Frontiers in Spin-1 Dynamics, Geometry and Metrology
探索 Spin-1 动力学、几何和计量学的新领域
  • 批准号:
    1806315
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Quantum Many-Body Spin Dynamics of a Bose-Einstein Condensate
玻色-爱因斯坦凝聚态的量子多体自旋动力学
  • 批准号:
    1208828
  • 财政年份:
    2012
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Robust Neutral Atom Qubits
鲁棒的中性原子量子位
  • 批准号:
    1107405
  • 财政年份:
    2011
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Squeezing in Spinor Bose Condensates
挤压旋量玻色凝聚
  • 批准号:
    1102777
  • 财政年份:
    2011
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Spinor Bose-Einstein Condensates in Optical Traps
光学陷阱中的旋量玻色-爱因斯坦凝聚
  • 批准号:
    0605049
  • 财政年份:
    2006
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Collaborative Research: Photonic Quantum Networking of Trapped Ion Qubits
合作研究:俘获离子量子位的光子量子网络
  • 批准号:
    0601244
  • 财政年份:
    2006
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Investigations of All-Optical Bose Condensates
全光学玻色凝聚体的研究
  • 批准号:
    0303013
  • 财政年份:
    2003
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
ITR: Cavity QED with Trapped Ions
ITR:带有捕获离子的腔 QED
  • 批准号:
    0326315
  • 财政年份:
    2003
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Crystallographic Structure Determination/Refinement Using Atomic Electron Density Functions, and Optimization of Appropriate Force Fields for Analysis
使用原子电子密度函数确定/细化晶体结构,并优化用于分析的适当力场
  • 批准号:
    9808098
  • 财政年份:
    1998
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant

相似国自然基金

Cortical control of internal state in the insular cortex-claustrum region
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    25 万元
  • 项目类别:

相似海外基金

Ultrafast Strong-Field Control of Coherence and Entanglement in Atoms and Molecules
原子和分子相干和纠缠的超快强场控制
  • 批准号:
    2309238
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Quantum computing with trapped ions Fast, high-fidelity entanglement via optical phase control
使用捕获离子进行量子计算 通过光学相位控制实现快速、高保真纠缠
  • 批准号:
    2886990
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Studentship
CAREER: Coherent Control, Measurement, and Entanglement of Single T-Center Qubits
职业:单 T 中心量子位的相干控制、测量和纠缠
  • 批准号:
    2238298
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Gravity Induced Quantum Entanglement: Methodologies & Noise Control
引力引起的量子纠缠:方法论
  • 批准号:
    2732458
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Studentship
Control of the quantum spin entanglement with ferromagnetic nanowindow
用铁磁纳米窗控制量子自旋纠缠
  • 批准号:
    20H02178
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Crystallization control using entanglement topology that not able to be realized only by linear polymer
使用纠缠拓扑进行结晶控制,仅通过线性聚合物无法实现
  • 批准号:
    17K05998
  • 财政年份:
    2017
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Coherent Control and Entanglement of Ions Confined in a Microfabricated Chip
微加工芯片中限制离子的相干控制和纠缠
  • 批准号:
    1775470
  • 财政年份:
    2016
  • 资助金额:
    $ 45万
  • 项目类别:
    Studentship
Entanglement control via reservoir engineering in ultracold gases
通过超冷气体储层工程进行纠缠控制
  • 批准号:
    EP/J016349/1
  • 财政年份:
    2012
  • 资助金额:
    $ 45万
  • 项目类别:
    Research Grant
AIS: Entanglement of Approximate Dynamic Programming and Modern Nonlinear Control for Complex Systems
AIS:复杂系统的近似动态规划与现代非线性控制的纠缠
  • 批准号:
    1101401
  • 财政年份:
    2011
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
QMHP:: Decoherence, dissipation, entanglement and control in nanostructures.
QMHP:: 纳米结构中的退相干、耗散、纠缠和控制。
  • 批准号:
    0901754
  • 财政年份:
    2009
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了