Rotational Spin-Optomechanics in an Ion Trap

离子阱中的旋转自旋光力学

基本信息

  • 批准号:
    2110591
  • 负责人:
  • 金额:
    $ 38.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

General audience abstract:As it becomes more and more challenging to increase the energy of particle accelerators to explore new physics, precision measurements provide an attractive approach to probe fundamental questions in physics. Levitated dielectric particles in high vacuum are ultrasensitive devices and have the potential to test the limits of quantum mechanics and to search for dark matter and dark energy. This project will develop an ultrasensitive levitated system with a nanodiamond in an ion trap. A levitated nanodiamond with a built-in spin qubit can be considered as a massive artificial atom. It will be used to study the quantum geometric phase due to fast rotation and to develop a rotational nanoparticle matter-wave interferometer for precision measurements and macroscopic quantum mechanics. The project will support the training of graduate students during the research. Essential research results will be integrated into the course taught by the PI for senior undergraduate students and graduate students. The PI will co-organize “Nanodays” and “Physics Inside Out” outreach events for K-12 students near Purdue University, and cooperate with other professionals to do outreach that combines science, art, and other fields to convey science to broad audiences.Technical audience abstract:This project will investigate rotational spin-optomechanics with a levitated nanodiamond in an ion trap. Theoretical investigations have suggested that a nanodiamond matter-wave interferometer would potentially test the limits of quantum mechanics and probe quantum gravity. However, a significant obstacle to creating quantum superposition states of an optically levitated nanodiamond is laser heating. In this project, the PI’s group will address this critical issue by using an ion trap to minimize heating and optical refrigeration to cool the internal temperature of a nanodiamond. A nanodiamond with a built-in spin qubit will be driven to rotate at high speed for studying both adiabatic and non-adiabatic quantum geometric phases. Besides, a non-Abelian 3D rotation will provide the opportunity to study the non-Abelian geometric phase. The system developed in this project will be important for quantum sensing and fundamental physics. This project will build on the recent accomplishments of the PI’s group, which has observed electron spin resonance of optically levitated nanodiamonds in a vacuum, driven a nanoparticle to rotate at a record high speed and created an ultrasensitive torque detector.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
普通受众摘要:随着增加粒子加速器探索新物理学的能量变得越来越挑战,精度测量为探测物理学基本问题提供了有吸引力的方法。高真空吸尘器中的悬浮饮食颗粒是超敏的设备,有可能测试量子力学的极限并寻找暗物质和暗能量。该项目将开发一个超敏感的悬浮系统,并在离子陷阱中使用纳米座。带有内置自旋定量的悬浮纳米座座可被视为庞大的人造原子。由于快速旋转,它将用于研究量子几何阶段,并开发旋转纳米粒子物质波干扰,以进行精确测量和宏观量子力学。该项目将在研究期间支持研究生的培训。基本的研究结果将纳入PI为高级本科生和研究生提供的课程中。 PI将为Purdue University附近的K-12学生共同组织“ Nanodays”和“ Inside Insides Out Out”外展活动,并与其他专业人员进行指导,以将科学,艺术和其他领域结合起来,以将科学传达给广泛的受众群体。技术摘要:该项目将与levitated Nananodiamondiamondiamondiamondiamonds trap iniimondiamonds iniiimondynion trap一起研究。理论研究表明,纳米符号的物质波干涉仪可能会测试量子力学和探针量子重力的极限。但是,在光悬浮的纳米座上产生量子叠加状态的重要障碍是激光加热。在该项目中,PI的组将通过使用离子陷阱来最大程度地减少加热和光学制冷以冷却纳米座的内部温度来解决这个关键问题。带有内置自旋定量的纳米座将驱动以高速旋转,以研究绝热和非绝热量子几何阶段。此外,非亚伯3D旋转将为研究非亚洲几何阶段提供机会。该项目中开发的系统对于量子灵敏度和基本物理学很重要。该项目将建立在PI小组的最新成就的基础上,该项目已经观察到电子旋转的电子旋转共振在真空中,驱使纳米颗粒以创纪录的高速旋转,并创造了超级敏感的扭矩探测器。这是NSF的法定任务和审查的范围,这表明了NSF的法规概念的范围,这是通过评估的范围来弥补的。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantum sensing and imaging with spin defects in hexagonal boron nitride
  • DOI:
    10.1080/23746149.2023.2206049
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sumukh Vaidya;Xingyu Gao;S. Dikshit;I. Aharonovich;Tongcang Li
  • 通讯作者:
    Sumukh Vaidya;Xingyu Gao;S. Dikshit;I. Aharonovich;Tongcang Li
Roadmap for optical tweezers
  • DOI:
    10.1088/2515-7647/acb57b
  • 发表时间:
    2023-04-01
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Volpe,Giovanni;Marago,Onofrio M.;Swartzlander,Grover A.
  • 通讯作者:
    Swartzlander,Grover A.
Stability of the Discrete Time-Crystalline Order in Spin-Optomechanical and Open Cavity QED Systems
  • DOI:
    10.3390/photonics9020061
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Zhengda Hu;Xingyu Gao;Tongcang Li
  • 通讯作者:
    Zhengda Hu;Xingyu Gao;Tongcang Li
On-chip optical levitation with a metalens in vacuum
  • DOI:
    10.1364/optica.438410
  • 发表时间:
    2021-11-20
  • 期刊:
  • 影响因子:
    10.4
  • 作者:
    Shen, Kunhong;Duan, Yao;Li, Tongcang
  • 通讯作者:
    Li, Tongcang
Nuclear spin polarization and control in hexagonal boron nitride
  • DOI:
    10.1038/s41563-022-01329-8
  • 发表时间:
    2022-08-15
  • 期刊:
  • 影响因子:
    41.2
  • 作者:
    Gao, Xingyu;Vaidya, Sumukh;Li, Tongcang
  • 通讯作者:
    Li, Tongcang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tongcang Li其他文献

Three-dimensional cooling and detection of a nanosphere with a single cavity
单腔纳米球的三维冷却与检测
  • DOI:
    10.1103/physreva.83.013816
  • 发表时间:
    2010-07
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Zhang-qi Yin;Tongcang Li;M. Feng
  • 通讯作者:
    M. Feng
A Casimir diode
卡西米尔二极管
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhujing Xu;Xingyu Gao;Jaehoon Bang;Z. Jacob;Tongcang Li
  • 通讯作者:
    Tongcang Li
Physical Principle of Optical Tweezers
光镊物理原理
  • DOI:
    10.1007/978-1-4614-6031-2_2
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    17.3
  • 作者:
    Tongcang Li
  • 通讯作者:
    Tongcang Li
High Temperature Polaritons in Ceramic Nanotube Antennas.
陶瓷纳米管天线中的高温极化子。
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Starko;Xueji Wang;Zhujing Xu;S. Pramanik;N. Lu;Tongcang Li;Z. Jacob
  • 通讯作者:
    Z. Jacob

Tongcang Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tongcang Li', 18)}}的其他基金

CAREER: Quantum Spin-Optomechanics of Optically Levitated Nanodiamonds
职业:光悬浮纳米金刚石的量子自旋光力学
  • 批准号:
    1555035
  • 财政年份:
    2016
  • 资助金额:
    $ 38.06万
  • 项目类别:
    Continuing Grant

相似国自然基金

旋转剪切作用下中煤级烟煤变形产气机理研究
  • 批准号:
    42302204
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
太阳风法拉第旋转成像计划
  • 批准号:
    42374197
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
煤层水动力柔性刀具旋转动力学特征及高效扩孔机制
  • 批准号:
    52374198
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
半刚性转子弹性对行波旋转超声电机输出性能影响机制的研究
  • 批准号:
    52365006
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于环形孔径旋转调制的时间编码成像方法研究
  • 批准号:
    12375307
  • 批准年份:
    2023
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目

相似海外基金

Highly efficient photocurrent and spin polarized current generation by cavity polariton
通过腔极化子产生高效光电流和自旋极化电流
  • 批准号:
    23H01942
  • 财政年份:
    2023
  • 资助金额:
    $ 38.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Visualisation and manipulation of the mechano-spin conversion by non-contact optical measurement
通过非接触式光学测量实现机械自旋转换的可视化和操作
  • 批准号:
    23H01471
  • 财政年份:
    2023
  • 资助金额:
    $ 38.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Quantum spin-optomechanics
量子自旋光力学
  • 批准号:
    RGPIN-2022-03551
  • 财政年份:
    2022
  • 资助金额:
    $ 38.06万
  • 项目类别:
    Discovery Grants Program - Individual
Design of Active Oxygen Evolution Catalysts by Introducing Low Spin Electron Configurations into 3d Metal Materials
通过将低自旋电子构型引入 3d 金属材料来设计活性氧析出催化剂
  • 批准号:
    20K15387
  • 财政年份:
    2020
  • 资助金额:
    $ 38.06万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Simultaneous observation of magnetic domain dynamics and spin-motive force generation using time-resolved magneto-optical microscopy
使用时间分辨磁光显微镜同时观察磁域动力学和自旋动势的产生
  • 批准号:
    19K03757
  • 财政年份:
    2019
  • 资助金额:
    $ 38.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了