Quantum spin-optomechanics

量子自旋光力学

基本信息

  • 批准号:
    RGPIN-2022-03551
  • 负责人:
  • 金额:
    $ 6.92万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Quantum technologies promise to enhance our ability to communicate securely, analyse complex problems, and realise powerful sensors for probing and monitoring our world. They achieve this by harnessing properties of the quantum systems-electrons, photons, sound waves-that make up the signals that stream into our homes and computers. Advances in quantum devices-microchips patterned with quantum optical or electronic circuits-are making execution of delicate operations on these quantum systems increasingly accessible, leading to widely publicised breakthroughs in quantum technology by established companies like Google and IBM, and by start-ups such as Xanadu and D-Wave in Canada. Despite this excitement, there are many technical and fundamental challenges that must be overcome to move quantum technologies from proof-of-principle demonstrations to readily available resources that impact everyday life. One of these challenges is the interconnect problem: how can we interface quantum technologies created from widely differing physical systems without destroying their quantum properties, i.e. changing their quantum state? This challenge prevents, for example, today's most powerful quantum computers from being connected to microscopic quantum memories or to optical networks that could form the backbone of a "quantum internet". Fortunately, innovations in quantum devices are emerging to address these challenges. This proposal describes how the world leading nanofabrication capabilities of Barclay and his group will be used to create quantum devices that connect physical systems that are otherwise incompatible with each other. These devices are centered around the lab's pioneering approach to fabricating quantum devices from diamond, a material that is commercially available in chip form and whose imperfections-impurities-host electrons whose quantum states are relatively impervious to the noisy outside world. These quantum states, which are related to the different spin that electrons can possess, form the basis for atomic sized qubits and are of intense interest to quantum technology researchers.  Building on a recent breakthrough in diamond quantum device development, this proposal will create interfaces between diamond spin qubits and quantum communication and computing hardware. These quantum interfaces will harness the ability of vibrations of mechanical resonators to couple to many different types of quantum systems: optical photons, superconducting quantum circuits, and spin qubits. Their underlying technology will also lead to architectures for connecting spin qubits to each other, and to powerful quantum sensing platforms for probing nanoscale materials. This project builds on recent investments in state-of-the-art research infrastructure (major CFI Innovation Fund awards in 2017 and 2021) and will position Canada as a leader within a highly competitive and rapidly growing area of quantum research.
量子技术有望增强我们安全通信、分析复杂问题以及实现用于探测和监控世界的强大传感器的能力。他们通过利用量子系统的特性(电子、光子、声波)来实现这一目标,这些系统构成了流入我们家庭和计算机的信号。量子设备——采用量子光学或电子电路的微芯片——的进步使得在这些量子系统上执行精密操作变得越来越容易,导致谷歌和IBM等老牌公司以及加拿大的Xanadu和D-Wave等初创企业广泛宣传量子技术的突破。尽管令人兴奋,但要将量子技术从原理验证演示转向影响日常生活的现成资源,还必须克服许多技术和基本挑战。这些挑战之一是互连问题:我们如何在不破坏其量子特性(即改变其量子态)的情况下连接由截然不同的物理系统创建的量子技术?例如,这一挑战阻止了当今最强大的量子计算机连接到微观量子存储器或可构成“量子互联网”骨干的光网络。幸运的是,量子设备的创新不断涌现,以应对这些挑战。 该提案描述了巴克莱及其团队世界领先的纳米制造能力将如何用于创建量子设备,以连接彼此不兼容的物理系统。这些设备以实验室采用金刚石制造量子设备的开创性方法为中心,金刚石是一种以芯片形式商业化的材料,其缺陷杂质承载着电子,其量子态相对不受外界噪音的影响。这些量子态与电子可以拥有的不同自旋相关,构成了原子大小的量子位的基础,并且引起了量子技术研究人员的浓厚兴趣。  该提案基于金刚石量子设备开发的最新突破,将在金刚石自旋量子位与量子通信和计算硬件之间创建接口。这些量子接口将利用机械谐振器的振动能力来耦合许多不同类型的量子系统:光学光子、超导量子电路和自旋量子位。他们的基础技术还将带来用于将自旋量子位相互连接的架构,以及用于探测纳米级材料的强大量子传感平台。该项目建立在最近对最先进的研究基础设施的投资(2017 年和 2021 年 CFI 创新基金的主要奖项)的基础上,将使加拿大成为竞争激烈且快速增长的量子研究领域的领导者。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Barclay, Paul其他文献

Barclay, Paul的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Barclay, Paul', 18)}}的其他基金

Detecting X-band diamond phononic resonators in the quantum regime
检测量子态中的 X 波段金刚石声子谐振器
  • 批准号:
    RTI-2023-00101
  • 财政年份:
    2022
  • 资助金额:
    $ 6.92万
  • 项目类别:
    Research Tools and Instruments
Hybrid quantum nanophotonics and optomechanics
混合量子纳米光子学和光力学
  • 批准号:
    RGPIN-2016-04535
  • 财政年份:
    2021
  • 资助金额:
    $ 6.92万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum phononic-photonic-spin networking devices
量子声子-光子-自旋网络设备
  • 批准号:
    521536-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 6.92万
  • 项目类别:
    Strategic Projects - Group
Demonstrating coherent optomechanical control of spin quantum memory
展示自旋量子存储器的相干光机械控制
  • 批准号:
    RTI-2021-00659
  • 财政年份:
    2020
  • 资助金额:
    $ 6.92万
  • 项目类别:
    Research Tools and Instruments
Hybrid quantum nanophotonics and optomechanics
混合量子纳米光子学和光力学
  • 批准号:
    RGPIN-2016-04535
  • 财政年份:
    2020
  • 资助金额:
    $ 6.92万
  • 项目类别:
    Discovery Grants Program - Individual
Hybrid quantum nanophotonics and optomechanics
混合量子纳米光子学和光力学
  • 批准号:
    RGPIN-2016-04535
  • 财政年份:
    2019
  • 资助金额:
    $ 6.92万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum phononic-photonic-spin networking devices
量子声子-光子-自旋网络设备
  • 批准号:
    521536-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 6.92万
  • 项目类别:
    Strategic Projects - Group
Spin Canada 2018 Workshop
Spin Canada 2018 研讨会
  • 批准号:
    530563-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 6.92万
  • 项目类别:
    Connect Grants Level 2
Hybrid quantum nanophotonics and optomechanics
混合量子纳米光子学和光力学
  • 批准号:
    RGPIN-2016-04535
  • 财政年份:
    2018
  • 资助金额:
    $ 6.92万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum nano-optomechanical devices
量子纳米光机械器件
  • 批准号:
    493807-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 6.92万
  • 项目类别:
    Strategic Projects - Group

相似国自然基金

SPIN90在幽门螺杆菌空泡毒素VacA致病中的作用及机制研究
  • 批准号:
    82372269
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
解毒方抑制HIF-1α-Exosomal miR-130b-3p-SPIN90介导的巨噬细胞M2型极化改善肝癌免疫抑制微环境的作用机制
  • 批准号:
    82374540
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
SPIN1激活IL-10诱导M2巨噬细胞极化促进胃癌浸润转移的机制研究
  • 批准号:
    82103490
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Spin-Peierls化合物的分子设计策略及电操控自旋态研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    64 万元
  • 项目类别:
    面上项目
自旋为1的Spin-Peierls模型的量子相变研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    18 万元
  • 项目类别:
    专项基金项目
SPIN1正反馈调控Hippo-YAP信号通路促胃癌侵袭转移的机制研究
  • 批准号:
    82060566
  • 批准年份:
    2020
  • 资助金额:
    34 万元
  • 项目类别:
    地区科学基金项目
ETS1-SPIN1-PI3K/Akt网络调控乳腺癌耐药的分子机制研究
  • 批准号:
    81902698
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
紧spin流形上Dirac方程及相关问题的研究
  • 批准号:
    11801499
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
血红素模型体系多自旋态可变电荷力场开发
  • 批准号:
    21873034
  • 批准年份:
    2018
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
特殊和乐流形的霍奇理论与规范理论
  • 批准号:
    11801539
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

RII Track-4:NSF: Resistively-Detected Electron Spin Resonance in Multilayer Graphene
RII Track-4:NSF:多层石墨烯中电阻检测的电子自旋共振
  • 批准号:
    2327206
  • 财政年份:
    2024
  • 资助金额:
    $ 6.92万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327826
  • 财政年份:
    2024
  • 资助金额:
    $ 6.92万
  • 项目类别:
    Continuing Grant
CAREER: Next-generation Logic, Memory, and Agile Microwave Devices Enabled by Spin Phenomena in Emergent Quantum Materials
职业:由新兴量子材料中的自旋现象实现的下一代逻辑、存储器和敏捷微波器件
  • 批准号:
    2339723
  • 财政年份:
    2024
  • 资助金额:
    $ 6.92万
  • 项目类别:
    Continuing Grant
Observing, Creating and Addressing Topological Spin Textures in a Monolayer XY Magnet
观察、创建和解决单层 XY 磁体中的拓扑自旋纹理
  • 批准号:
    EP/Y023250/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.92万
  • 项目类别:
    Research Grant
EPSRC-SFI: Developing a Quantum Bus for germanium hole-based spin qubits on silicon (GeQuantumBus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线 (GeQuantumBus)
  • 批准号:
    EP/X039889/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.92万
  • 项目类别:
    Research Grant
EPSRC-SFI: Developing a Quantum Bus for germanium hole based spin qubits on silicon (Quantum Bus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线(量子总线)
  • 批准号:
    EP/X040380/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.92万
  • 项目类别:
    Research Grant
Scalable and Automated Tuning of Spin-based Quantum Computer Architectures
基于自旋的量子计算机架构的可扩展和自动调整
  • 批准号:
    2887634
  • 财政年份:
    2024
  • 资助金额:
    $ 6.92万
  • 项目类别:
    Studentship
Charge-Spin Conversions and Nonreciprocal Transport in Chiral Materials
手性材料中的电荷自旋转换和不可逆输运
  • 批准号:
    2325147
  • 财政年份:
    2024
  • 资助金额:
    $ 6.92万
  • 项目类别:
    Standard Grant
Picosecond superconductivity-driven spin-torques
皮秒超导驱动的自旋扭矩
  • 批准号:
    EP/Z000637/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.92万
  • 项目类别:
    Research Grant
High-Field Solid-State Dynamic Nuclear Polarization with Paramagnetic Systems Beyond Simple Spin 1/2
超越简单自旋的顺磁系统高场固态动态核极化 1/2
  • 批准号:
    2411584
  • 财政年份:
    2024
  • 资助金额:
    $ 6.92万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了