Collaborative Research: A Data-Driven Employer-Academia Partnership for Continual Computing Curricular Change

协作研究:数据驱动的雇主-学术界合作伙伴关系,以实现持续的计算课程变革

基本信息

项目摘要

This project aims to serve the national interest by improving the supply of well-prepared computer science professionals capable of addressing the needs of American employers in the public and private sectors. This project intends to build a national partnership between employers and academia to help identify and mitigate gaps between the competencies of computing graduates and the expectations of potential employers. The project will survey computer science educators and practitioners to develop a model that defines the competencies expected by potential employers. The project team then plans to test the model at three institutions of higher education in Alabama – the University of Alabama, Tuscaloosa, Tuskegee University, and Shelton State Community College. Finally, the project team intends to develop tools and methods for institutions to identify and implement competency-based educational approaches for computer science across the nation. The project plans to use three interconnected strands of evidence-based activities to institute transformational change in the involved communities. First, a national strand will engage U.S. faculty in developing competency-based curricula informed by industry practitioner feedback. Second, a local pilot strand intends to create transformative curricular change based on student competencies using an evidence-based change model in the three Alabama institutions. Sociologists and computing faculty on the team will help to understand, predict, and reduce barriers to competency-based employment of computing graduates from marginalized communities in the heart of the impoverished Alabama Black Belt. The unique perspective relative to diversity, equity, and inclusion needs should serve as a model for other computing departments. The third strand will develop competency-based surveys for practitioners and academics to identify and refine specific competencies that are hoped to drive continual curricular change. Outcomes, including the change process, national workshops, and experiences from the local process will help with transferability in the computing education community. In addition to informing curricula, the project will provide valuable data for educational researchers to help close the gap between employers and higher education. Finally, as the competency approach to curricular design is relatively new in computing and engineering disciplines, lessons from this project will have the potential to transform curricular review and design in other STEM disciplines. The NSF IUSE: EHR Program supports research and development projects to improve the effectiveness of STEM education for all students. Through the Institutional and Community Transformation track, the program supports efforts to transform and improve STEM education across institutions of higher education and disciplinary communities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在通过改善准备充分的计算机科学专业人员的供应来服务于国家利益,这些专业人员能够满足美国公共和私营部门雇主的需求。 该项目旨在在雇主和学术界之间建立全国性的合作伙伴关系,以帮助确定和缩小计算机毕业生的能力与潜在雇主的期望之间的差距。 该项目将调查计算机科学教育者和从业者,以开发一个模型来定义潜在雇主期望的能力。 然后,项目团队计划在阿拉巴马州的三所高等教育机构——阿拉巴马大学塔斯卡卢萨分校、塔斯基吉大学和谢尔顿州立社区学院——测试该模型。 最后,项目团队打算开发工具和方法,供机构在全国范围内识别和实施基于能力的计算机科学教育方法。 该项目计划利用三个相互关联的循证活动,在相关社区中实施转型变革。 首先,一个全国性的项目将让美国教师根据行业从业者的反馈来开发基于能力的课程。 其次,当地的试点项目打算在阿拉巴马州的三个机构中使用基于证据的变革模型,根据学生的能力进行变革性的课程变革。 该团队的社会学家和计算机教师将帮助了解、预测和减少来自贫困的阿拉巴马州黑带中心边缘化社区的计算机毕业生基于能力的就业障碍。 关于多样性、公平性和包容性需求的独特视角应该成为其他计算部门的榜样。 第三部分将为从业者和学者开展基于能力的调查,以确定和完善希望推动持续课程变革的具体能力。 结果,包括变革过程、国家研讨会和地方过程的经验,将有助于计算机教育界的可转移性。 除了为课程提供信息外,该项目还将为教育研究人员提供有价值的数据,以帮助缩小雇主与高等教育之间的差距。 最后,由于课程设计的能力方法在计算和工程学科中相对较新,因此该项目的经验教训将有可能改变其他 STEM 学科的课程审查和设计。 NSF IUSE:EHR 计划支持研究和开发项目,以提高所有学生 STEM 教育的有效性。 通过机构和社区转型轨道,该计划支持高等教育机构和学科界的 STEM 教育转型和改进工作。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tiffani Williams其他文献

LDLR Gene
低密度脂蛋白受体基因
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tiffani Williams;Gregory C. Wolniak
  • 通讯作者:
    Gregory C. Wolniak
Unpacking the “Female Advantage” in the Career and Economic Impacts of College
揭示大学职业和经济影响中的“女性优势”
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tiffani Williams;Gregory C. Wolniak
  • 通讯作者:
    Gregory C. Wolniak
Worker Voices Special Brief: Pursuing Advancement through Personal Investment
工人之声特别简介:通过个人投资追求进步
  • DOI:
    10.59695/20240110
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Elizabeth Bogue Simpson;Tiffani Williams
  • 通讯作者:
    Tiffani Williams

Tiffani Williams的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tiffani Williams', 18)}}的其他基金

Collaborative research: Automated and community-driven synthesis of the tree of life
合作研究:自动化和社区驱动的生命之树合成
  • 批准号:
    1208337
  • 财政年份:
    2012
  • 资助金额:
    $ 14.46万
  • 项目类别:
    Standard Grant
III: Small: Collaborative: Novel Techniques for Understanding Convergence in Large-Scale Markov Chain Monte Carlo Phylogenetic Analyses
III:小:协作:理解大规模马尔可夫链蒙特卡罗系统发育分析中收敛性的新技术
  • 批准号:
    1018785
  • 财政年份:
    2010
  • 资助金额:
    $ 14.46万
  • 项目类别:
    Continuing Grant
III-CTX: Large-Scale Analysis of Collections of Phylogenetic Trees
III-CTX:系统发育树集合的大规模分析
  • 批准号:
    0713618
  • 财政年份:
    2007
  • 资助金额:
    $ 14.46万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325311
  • 财政年份:
    2024
  • 资助金额:
    $ 14.46万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 14.46万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347345
  • 财政年份:
    2024
  • 资助金额:
    $ 14.46万
  • 项目类别:
    Standard Grant
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
  • 批准号:
    2402555
  • 财政年份:
    2024
  • 资助金额:
    $ 14.46万
  • 项目类别:
    Standard Grant
Collaborative Research: GEO OSE Track 2: Developing CI-enabled collaborative workflows to integrate data for the SZ4D (Subduction Zones in Four Dimensions) community
协作研究:GEO OSE 轨道 2:开发支持 CI 的协作工作流程以集成 SZ4D(四维俯冲带)社区的数据
  • 批准号:
    2324714
  • 财政年份:
    2024
  • 资助金额:
    $ 14.46万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
  • 批准号:
    2325835
  • 财政年份:
    2024
  • 资助金额:
    $ 14.46万
  • 项目类别:
    Standard Grant
Collaborative Research: Fusion of Siloed Data for Multistage Manufacturing Systems: Integrative Product Quality and Machine Health Management
协作研究:多级制造系统的孤立数据融合:集成产品质量和机器健康管理
  • 批准号:
    2323083
  • 财政年份:
    2024
  • 资助金额:
    $ 14.46万
  • 项目类别:
    Standard Grant
Collaborative Research: Data-driven engineering of the yeast Kluyveromyces marxianus for enhanced protein secretion
合作研究:马克斯克鲁维酵母的数据驱动工程,以增强蛋白质分泌
  • 批准号:
    2323984
  • 财政年份:
    2024
  • 资助金额:
    $ 14.46万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
  • 批准号:
    2411152
  • 财政年份:
    2024
  • 资助金额:
    $ 14.46万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347344
  • 财政年份:
    2024
  • 资助金额:
    $ 14.46万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了