Conformal Field Theories in Holography and String Theory
全息术和弦理论中的共形场论
基本信息
- 批准号:2111748
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
There are four fundamental forces in the universe. The electromagnetic force and the two nuclear forces are described by Quantum Field Theory (QFT); the gravitational force is described by the theory of General Relativity (GR). String Theory aims to unify these four forces, while at the same time providing a quantum mechanical description of gravity. In this endeavor, quantum field theories that are scale invariant, so called conformal field theories (CFTs), are crucial: On the one hand they describe how strings move and interact; on the other hand, through the principle of holography, they can describe quantum gravity. The PI aims to deepen the understanding of string theory and QFTs by investigating such CFTs and their applications, with a focus on their mathematical structure and their connection to mathematics. The work aims to construct new examples of CFTs that can be used in string theory. In addition, this project will have a broader impact on education by offering suitable activities and research projects for undergraduate and graduate students, thereby introducing them to contemporary research. The PI will also work with the Center for Recruitment and Retention of Mathematics Teachers at the University of Arizona to develop modules that introduce high school students to quantitative thinking and mathematical reasoning in physics and other STEM disciplines.At a more technical level, the PI will develop 2D conformal perturbation theory with a focus on orbifold CFTs. He will use this to investigate the interplay between rational and irrational CFTs in moduli spaces of Calabi-Yau sigma models, and to investigate how the spectrum of holographic 2D CFTs such as symmetric orbifolds changes over their moduli space. He will also construct new holographic CFTs using permutation orbifolds and lattice orbifolds, which may lead to new examples of AdS/CFT dualities. He will particularly focus on CFTs with sparse light spectrum and extremal or near extremal CFTs. This research will rely on recent results from mathematics such as the theory of non-abelian orbifolds of vertex operator algebras.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
宇宙中有四个基本力量。电磁力和两个核力量通过量子场理论(QFT)描述;重力由一般相对论(GR)的理论描述。弦理论旨在统一这四个力,同时提供重力的量子机械描述。在这项工作中,量表不变的量子场理论(所谓的共形场理论(CFTS))至关重要:一方面,他们描述了字符串的移动和相互作用;另一方面,通过全息原则,它们可以描述量子重力。 PI的目的是通过研究此类CFT及其应用来加深对弦理论和QFT的理解,重点是它们的数学结构及其与数学的联系。该作品旨在构建可以在字符串理论中使用的CFT的新示例。此外,通过为本科生和研究生提供合适的活动和研究项目,该项目将对教育产生更大的影响,从而将其介绍给当代研究。 PI还将与亚利桑那大学的数学教师招聘和保留中心合作,以开发模块,这些模块会引入高中生在物理和其他STEM学科中的定量思维和数学推理。在更高的技术水平上,PI将开发出2D形式的触发理论,重点介绍ORBIFOLD CFTS。他将使用它来研究卡拉比Yau Sigma模型模量空间中合理和非理性CFT之间的相互作用,并研究全息2D CFT的频谱(例如对称轨道)在其模量空间上的变化。他还将使用置换的Orbifolds和Grattice Orbifolds构建新的全息CFT,这可能会导致ADS/CFT二元性的新示例。他将特别专注于稀疏光谱,极端或极端CFT的CFT。这项研究将依靠数学的最新结果,例如顶点操作员代数的非 - 亚伯利亚轨道理论。该奖项反映了NSF的法定任务,并被认为是通过基金会的智力优点和更广泛影响的审查标准通过评估来通过评估来支持的。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Limits of Vertex Algebras and Large N Factorization
- DOI:10.1007/s00220-023-04712-x
- 发表时间:2023-04-11
- 期刊:
- 影响因子:2.4
- 作者:Gemunden,Thomas;Keller,Christoph A.
- 通讯作者:Keller,Christoph A.
Deforming symmetric product orbifolds: a tale of moduli and higher spin currents
变形对称积轨道:模量和更高自旋电流的故事
- DOI:10.1007/jhep08(2022)159
- 发表时间:2022
- 期刊:
- 影响因子:5.4
- 作者:Apolo, Luis;Belin, Alexandre;Bintanja, Suzanne;Castro, Alejandra;Keller, Christoph A.
- 通讯作者:Keller, Christoph A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christoph Keller其他文献
Pilot study of an occupational healthcare program to assess the SARS-CoV-2 infection and immune status of employees in a large pharmaceutical company
职业医疗保健计划的试点研究,以评估大型制药公司员工的 SARS-CoV-2 感染和免疫状态
- DOI:
10.1080/03007995.2021.1914943 - 发表时间:
2021 - 期刊:
- 影响因子:2.3
- 作者:
Petra C. Moroni;Christoph Keller;Mazyar Mahmoudi;Kimberley Kallsen;C. Eschenfelder;R. Sigmund;Hanns Walter Müller;P. Baum;Bertram Boos;Michael Schneider;E. Mundt - 通讯作者:
E. Mundt
Performance, Fermentation Characteristics and Composition of the Microbiome in the Digest of Piglets Kept on a Feed With Humic Acid-Rich Peat
富含腐植酸泥炭饲料的仔猪消化物的性能、发酵特性和微生物组成
- DOI:
10.3389/fvets.2019.00029 - 发表时间:
2019 - 期刊:
- 影响因子:3.2
- 作者:
C. Visscher;J. Hankel;A. Nies;B. Keller;Eric J. C. Gálvez;T. Strowig;Christoph Keller;G. Breves - 通讯作者:
G. Breves
Nucleotide and deduced amino acid sequence of equine retinal and pineal gland phosducin.
马视网膜和松果体磷酸蛋白的核苷酸和推导的氨基酸序列。
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:1
- 作者:
Christoph Keller;Rüdiger Schulz - 通讯作者:
Rüdiger Schulz
Optimized Dynamic Mode Decomposition for Reconstruction and Forecasting of Atmospheric Chemistry Data
大气化学数据重建和预测的优化动态模式分解
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Meghana Velegar;Christoph Keller;J. Kutz - 通讯作者:
J. Kutz
Christoph Keller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于MRE支座的软土场地结构智能隔震理论与方法研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
基于MRE支座的软土场地结构智能隔震理论与方法研究
- 批准号:52178295
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
非平衡活性物质系统的势流场地貌理论
- 批准号:11905222
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
跨断层近场地震下高速铁路桥梁结构安全理论研究
- 批准号:
- 批准年份:2019
- 资助金额:231 万元
- 项目类别:联合基金项目
河谷场地地震波传播理论及散射规律研究
- 批准号:51479050
- 批准年份:2014
- 资助金额:84.0 万元
- 项目类别:面上项目
相似海外基金
Conformal Field Theories with Higher Spin Symmetry and Duality Invariance
具有更高自旋对称性和对偶不变性的共形场论
- 批准号:
DP230101629 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Discovery Projects
Extended operators in conformal field theories and the quantum M2-brane.
共形场论和量子 M2 膜中的扩展算子。
- 批准号:
2607349 - 财政年份:2021
- 资助金额:
$ 22.5万 - 项目类别:
Studentship
Topological and conformal interfaces in two-dimensional quantum field theories
二维量子场论中的拓扑和共形界面
- 批准号:
2616598 - 财政年份:2021
- 资助金额:
$ 22.5万 - 项目类别:
Studentship
Quantum Groups, Support Theory, and Conformal Field Theories
量子群、支持理论和共形场论
- 批准号:
2149817 - 财政年份:2021
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Theoretical condensed matter physics; with a focus on (conformal) field theories and constrained bosonic lattice models
理论凝聚态物理;
- 批准号:
2893444 - 财政年份:2021
- 资助金额:
$ 22.5万 - 项目类别:
Studentship