Quantum Groups, Support Theory, and Conformal Field Theories

量子群、支持理论和共形场论

基本信息

  • 批准号:
    2149817
  • 负责人:
  • 金额:
    $ 15.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-15 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

This project will establish a new framework that connects the physics of certain two-dimensional physical systems, called conformal field theories (CFTs), with the mathematics of certain well-studied algebraic objects, called quantum groups. Establishing such a connection will greatly advance our understanding of both subjects, and provide novel tools for studying two-dimensional CFTs. In implementing this project, new research opportunities will be created for undergraduates and early graduate students. These research opportunities will be supported by grant funding. The PI will also provide direct support for preexisting programs which seek to increase access to mathematics among women and underrepresented minorities.In more detail, one component of the project is to find an equivalence of (ribbon tensor) categories between the representation category of the so-called triplet vertex algebra, and the representation category of small quantum SL(2). Such an equivalence was conjectured by mathematical physicists in the mid-2000’s, and some explicit progress has been made towards its resolution in recent works of the PI and others. A positive resolution to this conjecture will provide the first direct link between logarithmic CFTs and quantum groups, a phenomenon which should be endemic among the most fundamental classes of logarithmic CFTs. A second component of the project is the computation of the Balmer spectrum for small quantum groups associated to arbitrary simple algebraic groups. This computation will employ and establish new links between support theory and geometric representation theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将建立一个新的框架,将某些二维物理系统的物理学(称为共形场论(CFTs))与某些经过充分研究的代数对象(称为量子群)的数学联系起来。 建立这样的联系将大大促进我们对这两个主题的理解,并为研究二维CFTs提供新的工具。在实施这一项目时,将为本科生和早期研究生创造新的研究机会。这些研究机会将得到赠款资金的支持。PI还将直接支持旨在增加妇女和代表性不足的少数民族对数学的接触的现有计划。更详细地说,该项目的一个组成部分是找到所谓的三重顶点代数的表示类别与小量子SL(2)的表示类别之间的(带状张量)类别的等价性。这种等价性在2000年代中期被数学物理学家证明,在PI和其他人最近的工作中,已经取得了一些明确的进展。这个猜想的一个积极的解决方案将提供对数CFTs和量子群之间的第一个直接联系,这种现象应该是最基本的对数CFTs类中的地方病。该项目的第二个组成部分是计算与任意简单代数群相关的小量子群的巴耳末谱。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hypersurface support and prime ideal spectra for stable categories
  • DOI:
    10.2140/akt.2023.8.25
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    C. Negron;J. Pevtsova
  • 通讯作者:
    C. Negron;J. Pevtsova
Cohomology of finite tensor categories: Duality and Drinfeld centers
有限张量类别的上同调:对偶性和德林菲尔德中心
POINTED HOPF ACTIONS ON CENTRAL SIMPLE DIVISION ALGEBRAS
中心简除代数上的尖HOPF作用
  • DOI:
    10.1007/s00031-021-09690-9
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    ETINGOF, P.;NEGRON, C.
  • 通讯作者:
    NEGRON, C.
Log-Modular Quantum Groups at Even Roots of Unity and the Quantum Frobenius I
Support theory for Drinfeld doubles of some infinitesimal group schemes
一些无穷小群方案的 Drinfeld 双打的支持理论
  • DOI:
    10.2140/ant.2023.17.217
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Friedlander, Eric M.;Negron, Cris
  • 通讯作者:
    Negron, Cris
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cris Negron其他文献

The Half-quantum Flag Variety and Representations for Small Quantum Groups
  • DOI:
    10.1007/s00031-025-09909-z
  • 发表时间:
    2025-06-04
  • 期刊:
  • 影响因子:
    0.400
  • 作者:
    Cris Negron;Julia Pevtsova
  • 通讯作者:
    Julia Pevtsova

Cris Negron的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cris Negron', 18)}}的其他基金

CAREER: Homotopical representation theory and TQFTs
职业:同伦表示理论和 TQFT
  • 批准号:
    2239698
  • 财政年份:
    2023
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Continuing Grant
Quantum Groups, Support Theory, and Conformal Field Theories
量子群、支持理论和共形场论
  • 批准号:
    2001608
  • 财政年份:
    2020
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1503147
  • 财政年份:
    2015
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Fellowship Award

相似海外基金

Support for Institutes and Research Groups on Qualitative and Multi-Method Research: 2024-2026
对定性和多方法研究机构和研究小组的支持:2024-2026
  • 批准号:
    2343087
  • 财政年份:
    2024
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Standard Grant
Transfer Advocacy Groups: Transforming Culture to Support Community College Transfer Students of Color in Undergraduate Physics
转学倡导团体:转变文化以支持社区学院本科物理有色人种转学生
  • 批准号:
    2224295
  • 财政年份:
    2023
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Continuing Grant
Collaborating to improve bereavement support provision in the UK, particularly for minoritised and marginalised ethnic groups
合作改善英国的丧亲支持服务,特别是针对少数族裔和边缘化族裔群体
  • 批准号:
    2887056
  • 财政年份:
    2023
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Studentship
Evaluating Novel Approaches that enGage And support vulnerable patient Groups to Equitably access primary care (ENGAGE): Building the foundation for a national adaptive platform trial
评估吸引和支持弱势患者群体公平获得初级保健的新方法 (ENGAGE):为国家适应性平台试验奠定基础
  • 批准号:
    487680
  • 财政年份:
    2023
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Operating Grants
Transfer Advocacy Groups: Transforming Culture to Support Transfer Students of Color in Undergraduate Physics
转学倡导团体:转变文化以支持本科物理有色人种转学生
  • 批准号:
    2224296
  • 财政年份:
    2023
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Continuing Grant
Supporting Indigenous Caregivers: Barriers and facilitators to implementing culturally safe dementia caregiver support groups with Indigenous communities and local Alzheimer Societies
支持土著护理人员:与土著社区和当地阿尔茨海默病协会一起实施文化安全的痴呆症护理人员支持小组的障碍和促进因素
  • 批准号:
    495659
  • 财政年份:
    2023
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Operating Grants
Conference: Travel and Conference Support for Students from Underrepresented Groups for the 2022 CDS meeting
会议:为来自代表性不足群体的学生参加 2022 年 CDS 会议提供差旅和会议支持
  • 批准号:
    2214249
  • 财政年份:
    2022
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Standard Grant
Research on resident-led visiting daily life support groups for the elderly that are not covered by long-term care insurance
居民主导的非长期护理保险老年人上门生活支持小组研究
  • 批准号:
    22K01974
  • 财政年份:
    2022
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Addressing Preparation Gaps and Promoting Culturally Relevant Teaching to Support Diverse Groups in Computing Courses
解决准备差距并促进文化相关的教学,以支持不同群体的计算机课程
  • 批准号:
    2142314
  • 财政年份:
    2022
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Standard Grant
Addressing Preparation Gaps and Promoting Culturally Relevant Teaching to Support Diverse Groups in Computing Courses
解决准备差距并促进文化相关的教学,以支持不同群体的计算机课程
  • 批准号:
    2142381
  • 财政年份:
    2022
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了