RUI: Amplitudes in Gauge Theory and Gravity

RUI:规范理论和引力中的振幅

基本信息

  • 批准号:
    2111943
  • 负责人:
  • 金额:
    $ 13.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

This award funds the research activities of Professor Stephen Naculich at Bowdoin College.Theoretical elementary particle physics seeks to develop mathematical models that can explain the nature and behavior of the smallest constituents of matter (the so-called "elementary particles"). As part of his research, Professor Naculich aims to develop more efficient mathematical tools for calculating the predictions of existing models that describe the behaviors of quarks and gluons, particles that are important for understanding the strong interaction, and extending these methods to more general theories. A second goal of this research is to explore links between these sorts of theories and theories that describe the behavior of gravitons, the particles responsible for the force of gravity. The insights gained through this research will be disseminated through journal publications, seminars, and conference proceedings. As a result, this research will advance the national interest by promoting the progress of science in one of its most fundamental directions: the discovery and understanding of new physical laws. This project is also expected to have significant broader impacts, since it integrally involves participation by undergraduate students. It will therefore contribute to their education by providing hands-on training in research methods in theoretical physics. Such involvement will encourage and prepare highly-talented students for graduate study and careers in critical scientific fields.In more technical terms, this project will focus on the structure of perturbative scattering amplitudes in gauge theories and gravity, and the relations between them. In particular, the project will explore the Regge (or very high energy) limit of scattering amplitudes in nonplanar supersymmetric Yang-Mills theory to all orders in the loop expansion, combining group theory methods, explicit loop-level results, the known structure of infrared divergences, and eikonal methods. It will also investigate, using similar tools, the Regge limit of scattering amplitudes in gravity and supergravity, and its connection with the two-body problem in general relativity and gravitational wave generation. Finally, this research will involve the continued exploration of the recently discovered "color-factor symmetry" of tree- and loop-level gauge-theory amplitudes, and its relationship to color-kinematic duality in general gauge theories.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项资助鲍登学院斯蒂芬·纳库利奇教授的研究活动。理论基本粒子物理学寻求发展数学模型来解释物质的最小组成部分(即所谓的“基本粒子”)的性质和行为。作为他研究的一部分,Naculich教授的目标是开发更有效的数学工具,用于计算描述夸克和胶子(对理解强相互作用很重要的粒子)行为的现有模型的预测,并将这些方法扩展到更一般的理论。这项研究的第二个目标是探索这些理论与描述引力子行为的理论之间的联系,引力子是负责引力的粒子。通过这项研究获得的见解将通过期刊出版物、研讨会和会议记录进行传播。因此,这项研究将通过促进科学在其最基本的方向之一的进步来促进国家利益:发现和理解新的物理定律。该项目还有望产生更广泛的影响,因为它全面涉及本科生的参与。因此,它将通过提供理论物理研究方法的实践培训,为他们的教育做出贡献。这种参与将鼓励和培养高素质的学生在关键科学领域的研究生学习和职业生涯。在更技术性的术语中,本项目将侧重于规范理论和重力中微扰散射振幅的结构,以及它们之间的关系。特别地,本项目将结合群论方法、显式环能级结果、已知的红外发散结构和eikonal方法,探索非平面超对称杨-米尔斯理论在环展开中所有阶散射振幅的Regge(或极高能量)极限。它还将使用类似的工具,研究重力和超重力散射振幅的Regge极限,以及它与广义相对论中的二体问题和引力波产生的联系。最后,本研究将继续探索最近发现的树级和环级规范理论振幅的“颜色因子对称性”,以及它与一般规范理论中颜色-运动学对偶的关系。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Color-factor symmetry of the amplitudes of Yang-Mills and biadjoint scalar theory using perturbiner methods
  • DOI:
    10.1007/jhep06(2023)084
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    S. Naculich
  • 通讯作者:
    S. Naculich
Proof of a three-loop relation between the Regge limits of four-point amplitudes in $$ \mathcal{N} $$ = 4 SYM and $$ \mathcal{N} $$ = 8 supergravity
$$ mathcal{N} $$ = 4 SYM 和 $$ mathcal{N} $$ = 8 超重力中四点振幅 Regge 极限之间的三环关系证明
  • DOI:
    10.1007/jhep07(2022)043
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Naculich, Stephen G.;Wecker, Theodore W.
  • 通讯作者:
    Wecker, Theodore W.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Naculich其他文献

Stephen Naculich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Naculich', 18)}}的其他基金

RUI: Amplitudes in Gauge theory and Gravity
RUI:规范理论和引力中的振幅
  • 批准号:
    1720202
  • 财政年份:
    2017
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Continuing Grant
RUI: Supersymmetric Gauge Theory and String Theory
RUI:超对称规范理论和弦理论
  • 批准号:
    1416123
  • 财政年份:
    2014
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
RUI: Supersymmetric Gauge Theory and String Theory
RUI:超对称规范理论和弦理论
  • 批准号:
    1067961
  • 财政年份:
    2011
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
RUI: Supersymmetric gauge theory and Dirichlet-branes
RUI:超对称规范理论和狄利克雷膜
  • 批准号:
    0756518
  • 财政年份:
    2008
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Continuing Grant
RUI: Supersymmetric gauge theory and Dirichlet-branes
RUI:超对称规范理论和狄利克雷膜
  • 批准号:
    0456944
  • 财政年份:
    2005
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Continuing Grant
RUI: Supersymmetric Gauge Theory and Dirichlet-Branes
RUI:超对称规范理论和狄利克雷-布拉内斯
  • 批准号:
    0140281
  • 财政年份:
    2002
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Multilegged amplitudes: from CFT to Higgs production at future colliders
多足振幅:从 CFT 到未来对撞机希格斯粒子的产生
  • 批准号:
    23K19047
  • 财政年份:
    2023
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Classical general relativity and gravitational waves from scattering amplitudes
经典广义相对论和散射振幅的引力波
  • 批准号:
    2896026
  • 财政年份:
    2023
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Studentship
Three-Body Amplitudes from Lattice QCD
晶格 QCD 的三体振幅
  • 批准号:
    2310036
  • 财政年份:
    2023
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
Amplitudes, Strings and Duality
振幅、弦和对偶性
  • 批准号:
    ST/X00063X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Research Grant
Test study of stimulated-superradiant FEL toward extreme high field amplitudes of radiation
受激超辐射FEL对极高辐射场幅值的测试研究
  • 批准号:
    23K17306
  • 财政年份:
    2023
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Amplitudes in strongly curved backgrounds
强烈弯曲背景中的振幅
  • 批准号:
    2782685
  • 财政年份:
    2022
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Studentship
Establishing bulk-to-boundary connections in celestial holography: a new framework to constrain scattering amplitudes
在天体全息术中建立体到边界的连接:约束散射幅度的新框架
  • 批准号:
    568219-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Scattering Amplitudes and Correlation Functions
散射幅度和相关函数
  • 批准号:
    2207138
  • 财政年份:
    2022
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Continuing Grant
From amplitudes at strong coupling to theories of Class S
从强耦合振幅到 S 类理论
  • 批准号:
    2759201
  • 财政年份:
    2022
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Studentship
Combinatorics of finite-dimensional algebras, with applications to scattering amplitudes
有限维代数的组合及其在散射振幅中的应用
  • 批准号:
    RGPIN-2022-03960
  • 财政年份:
    2022
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了