Collaborative Research: Resource-Constrained Optimal Learning Framework for Post-Seismic Regional Building Damage Inference
合作研究:震后区域建筑损伤推断的资源受限最优学习框架
基本信息
- 批准号:2112758
- 负责人:
- 金额:$ 32.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This grant will support research that will contribute new knowledge related to resource allocation for post-seismic building damage assessment, promoting the progress of science and preserving the national welfare. During emergency relief operations after an earthquake or other disaster, it is critical to accurately assess the infrastructural damage across the impacted region. Critical resources must be allocated quickly, before labor-intensive reconnaissance surveys are able to inspect each building. Thus, certain inspections should be prioritized in order to deliver an optimal damage assessment survey in time to benefit first-response relief efforts. This award supports fundamental research to develop a mathematical modeling framework to guide inspection teams through post-seismic reconnaissance missions. This new approach will holistically identify buildings to be prioritized for inspection and design inspection schedules to efficiently visit these buildings with limited time and inspection crew members. Results from this research will expedite regional hazard damage assessment, which will improve disaster management and thereby help save human lives, ensure ethical resource allocation, and preserve the welfare of our society. The project will prepare future civil engineers, mathematicians and statisticians with multi-disciplinary knowledge, and will broaden the participation of underrepresented groups in research which positively impact engineering education.This research integrates concepts from statistical and optimal learning with models for routing and scheduling. These two aspects have been extensively studied separately, but never jointly. This knowledge gap poses a serious challenge to the guidance of inspection teams, which collect information in the field subject to resource constraints. The research team will develop an integrated modeling framework which bridges optimal learning and combinatorial optimization to identify inspection routes and schedules that maximize the predictive power of machine learning models for post-seismic building damage assessment. The new methodology will be validated on real-world benchmarks, including data from the 2011 Chile and 2015 Nepal earthquakes, as well as a regional earthquake simulation testbed for the San Francisco Bay. The results will improve crisis management, while also providing new insights into other domains (such as health and disease control) that face a tight tradeoff between data expense and information gain.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这笔赠款将支持研究,这将有助于有关地震后建筑物损坏评估资源分配的新知识,促进科学进步和保护国家福利。在地震或其他灾害后的紧急救援行动中,准确评估受灾地区的基础设施损坏至关重要。在劳动密集型的侦察调查能够检查每个建筑物之前,必须迅速分配关键资源。因此,应优先进行某些视察,以便及时进行最佳损害评估调查,使第一反应救济工作受益。该奖项支持基础研究,以开发数学建模框架,指导检查组完成震后侦察任务。这一新方法将全面确定优先检查的建筑物,并设计检查时间表,以便在有限的时间和检查人员的情况下有效地访问这些建筑物。这项研究的结果将加快区域灾害损失评估,这将改善灾害管理,从而有助于拯救人类生命,确保道德资源分配,并维护我们社会的福利。该项目将为未来的土木工程师,数学家和统计学家提供多学科知识,并将扩大代表性不足的群体参与对工程教育产生积极影响的研究。该研究将统计和最佳学习的概念与路由和调度模型相结合。这两个方面已被广泛研究分开,但从来没有一起。这种知识差距对视察队的指导工作构成严重挑战,视察队在实地收集资料,但资源有限。该研究团队将开发一个集成建模框架,将最优学习和组合优化结合起来,以确定检查路线和时间表,最大限度地提高机器学习模型对地震后建筑物损坏评估的预测能力。新方法将在真实世界的基准上得到验证,包括2011年智利和2015年尼泊尔地震的数据,以及旧金山弗朗西斯科湾的区域地震模拟试验台。研究结果将改善危机管理,同时也为面临数据支出和信息获取之间的严格权衡的其他领域(如健康和疾病控制)提供新的见解。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Adaptive Local Kernels Formulation of Mutual Information with Application to Active Post-Seismic Building Damage Inference
- DOI:10.1016/j.ress.2021.107915
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:M. Sheibani;Ge Ou
- 通讯作者:M. Sheibani;Ge Ou
Efficient Structural Reconnaissance Surveying for Regional Postseismic Damage Inference with Optimal Inspection Scheduling
- DOI:10.1061/(asce)em.1943-7889.0002069
- 发表时间:2022-02
- 期刊:
- 影响因子:3.3
- 作者:M. Sheibani;Yinhu Wang;Ge Ou;Nikola Marković
- 通讯作者:M. Sheibani;Yinhu Wang;Ge Ou;Nikola Marković
Guided post-earthquake reconnaissance surveys considering resource constraints for regional damage inference
- DOI:10.1177/87552930221101415
- 发表时间:2022-06
- 期刊:
- 影响因子:5
- 作者:M. Sheibani;Ge Ou
- 通讯作者:M. Sheibani;Ge Ou
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nikola Markovic其他文献
Nikola Markovic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: LTREB: The importance of resource availability, acquisition, and mobilization to the evolution of life history trade-offs in a variable environment.
合作研究:LTREB:资源可用性、获取和动员对于可变环境中生命史权衡演变的重要性。
- 批准号:
2338394 - 财政年份:2024
- 资助金额:
$ 32.92万 - 项目类别:
Continuing Grant
Collaborative Research: LTREB: The importance of resource availability, acquisition, and mobilization to the evolution of life history trade-offs in a variable environment.
合作研究:LTREB:资源可用性、获取和动员对于可变环境中生命史权衡演变的重要性。
- 批准号:
2338395 - 财政年份:2024
- 资助金额:
$ 32.92万 - 项目类别:
Continuing Grant
Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
- 批准号:
2312835 - 财政年份:2023
- 资助金额:
$ 32.92万 - 项目类别:
Standard Grant
Collaborative Research: Resource Collaborative for Immersive Technologies (RECITE)
协作研究:沉浸式技术资源协作 (RECITE)
- 批准号:
2331452 - 财政年份:2023
- 资助金额:
$ 32.92万 - 项目类别:
Standard Grant
Collaborative Research: Resource Collaborative for Immersive Technologies (RECITE)
协作研究:沉浸式技术资源协作 (RECITE)
- 批准号:
2331455 - 财政年份:2023
- 资助金额:
$ 32.92万 - 项目类别:
Standard Grant
Collaborative Research: IRES Track I: US-Costa Rica Collaboration to Quantify the Holistic Benefits of Resource Recovery in Small-Scale Communities
合作研究:IRES 第一轨:美国-哥斯达黎加合作量化小规模社区资源回收的整体效益
- 批准号:
2246349 - 财政年份:2023
- 资助金额:
$ 32.92万 - 项目类别:
Standard Grant
Collaborative Research: Coordinating Offline Resource Allocation Decisions and Real-Time Operational Policies in Online Retail with Performance Guarantees
协作研究:在绩效保证下协调在线零售中的线下资源分配决策和实时运营策略
- 批准号:
2226901 - 财政年份:2023
- 资助金额:
$ 32.92万 - 项目类别:
Standard Grant
Collaborative Research: The Individual Differences Corpus: A resource for testing and refining hypotheses about individual differences in speech production
协作研究:个体差异语料库:用于测试和完善有关言语产生个体差异的假设的资源
- 批准号:
2234096 - 财政年份:2023
- 资助金额:
$ 32.92万 - 项目类别:
Standard Grant
Collaborative Research: GCR: Common Pool Resource Theory as a Scalable Framework for Catalyzing Stakeholder-Driven Solutions to the Freshwater Salinization Syndrome
合作研究:GCR:公共池资源理论作为催化利益相关者驱动的淡水盐化综合症解决方案的可扩展框架
- 批准号:
2312326 - 财政年份:2023
- 资助金额:
$ 32.92万 - 项目类别:
Continuing Grant
Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
- 批准号:
2312836 - 财政年份:2023
- 资助金额:
$ 32.92万 - 项目类别:
Standard Grant