Theory and Methods for Tree-Informed High-Dimensional Compositional Data Analysis

树型高维成分数据分析的理论与方法

基本信息

  • 批准号:
    2113458
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Compositional data, that is, quantitative measurements of the parts of some whole, is subject to constraints that necessitate its analysis be distinct from that of standard unconstrained multivariate statistical analysis. High-dimensional compositional data naturally arises in a wide range of modern scientific applications, including human microbiome studies, nutritional science, genomics studies, and geochemistry. In these scientific applications, a hierarchical relationship represented by a tree structure is often available for the compositional data’s different components. Because of compositional nature and tree structure, these data pose a unique challenge to gaining reliable and scientifically meaningful insights in a data-driven way. Current efforts on analyzing such tree-informed compositional data are primarily designed for individual applications; there is need for new methodology and theory in a unified framework. Motivated by this need, this project aims to develop novel statistical theories, methodologies, and computational tools for more robust and efficient analysis. The project will provide interdisciplinary research opportunities for students who aim to work on the intersection between statistics and other scientific areas. The project will also develop user-friendly open-source software implementing the new statistical methods to benefit a broad scientific community. This project aims to study how statistical analysis should take data's compositional nature and tree structure into account reliably and efficiently. Through a unified framework, the project will develop novel and principled methodologies and provide a deep understanding of the tree structure's role in tree-informed compositional data analysis. Specifically, this research will study three fundamental topics in tree-informed compositional data analysis: 1) independence and conditional independence test for tree-informed compositional data, 2) testing for differential components in tree-informed compositional data, and 3) metric learning for tree-informed compositional data. The resulting methods and theories from the project will lead to more robust and powerful practical tools for tree-informed compositional data analysis in different scientific fields, ultimately helping advance knowledge in science and health.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
组成数据,即某些整体的部分的定量测量,受到约束,这使得其分析必须与标准的无约束多元统计分析不同。高维组成数据自然出现在广泛的现代科学应用中,包括人类微生物组研究,营养科学,基因组学研究和地球化学。在这些科学应用中,由树结构表示的层次关系通常可用于组合数据的不同组件。由于组成性质和树形结构,这些数据对以数据驱动的方式获得可靠和有科学意义的见解提出了独特的挑战。目前分析这种树信息组合数据的努力主要是为个人应用程序设计的,需要在一个统一的框架中的新方法和理论。基于这一需求,该项目旨在开发新的统计理论,方法和计算工具,以实现更强大和有效的分析。该项目将提供跨学科的研究机会,为学生谁的目标是统计和其他科学领域之间的交叉工作。该项目还将开发方便用户的开放源码软件,采用新的统计方法,使广大科学界受益。本项目旨在研究统计分析应如何可靠有效地考虑数据的组成性质和树形结构。通过一个统一的框架,该项目将开发新的和原则性的方法,并提供了一个深刻的理解树结构的作用,在树知情的组合数据分析。具体而言,本研究将研究树信息组合数据分析中的三个基本主题:1)树信息组合数据的独立性和条件独立性测试,2)树信息组合数据中的差分分量测试,以及3)树信息组合数据的度量学习。该项目产生的方法和理论将为不同科学领域的树木信息成分数据分析带来更强大和更强大的实用工具,最终帮助推进科学和健康知识。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Robust differential abundance test in compositional data
成分数据中稳健的差异丰度测试
  • DOI:
    10.1093/biomet/asac029
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Wang, Shulei
  • 通讯作者:
    Wang, Shulei
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shulei Wang其他文献

EP1297: PTBP1 PLAYS A CRITICAL ROLE IN MEDIATING HOST-MICROBE INTERACTIONS AND PREVENTING COLITIS AND COLORECTAL CANCER
  • DOI:
    10.1016/s0016-5085(22)62620-9
  • 发表时间:
    2022-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ka Lam Nguyen;Emily Tung;Danielle Yee;Shulei Wang;Wenyan Mei
  • 通讯作者:
    Wenyan Mei
Walnut-like high-entropy sulfides via facile route for enhanced supercapacitor performance
通过简便路线制备类核桃状高熵硫化物以提高超级电容器性能
  • DOI:
    10.1016/j.est.2025.115336
  • 发表时间:
    2025-02-28
  • 期刊:
  • 影响因子:
    9.800
  • 作者:
    Shulei Wang;Yajun Ji;Bin Zhang;Shixiong Zhang;Pengcheng Zhang;Peng Zhou
  • 通讯作者:
    Peng Zhou
Hypothalamic hamartoma, gray matter heterotopia and polymicrogyria in a boy: a case report and literature review.
男孩下丘脑错构瘤、灰质异位和多小脑回:病例报告和文献综述。
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Hongwu Zhang;Yu Li;Bao;L. Shen;Shulei Wang;H. Yao
  • 通讯作者:
    H. Yao
A novel ratiometric electrochemical sensor based on bifunctional copper-coordinated polydopamine molecular imprinting for the detection of chlorpromazine
一种基于双功能铜配位聚多巴胺分子印迹的比率型电化学传感器用于检测氯丙嗪
  • DOI:
    10.1016/j.snb.2025.137910
  • 发表时间:
    2025-10-01
  • 期刊:
  • 影响因子:
    7.700
  • 作者:
    Jingxia Yuan;Shulei Wang;Lu Chen;Yiwei Liu;Faqiong Zhao;Baizhao Zeng
  • 通讯作者:
    Baizhao Zeng
Rational construction of tremella-like CuCo LDH@Nisub3/subSsub2/sub nanocomposites as high-performance supercapacitor electrode materials
作为高性能超级电容器电极材料的类银耳状 CuCo LDH@Ni₃S₂纳米复合材料的合理构建
  • DOI:
    10.1016/j.jallcom.2025.179586
  • 发表时间:
    2025-04-05
  • 期刊:
  • 影响因子:
    6.300
  • 作者:
    Peng Zhou;Yajun Ji;Bin Zhang;Pengcheng Zhang;Shixiong Zhang;Shulei Wang
  • 通讯作者:
    Shulei Wang

Shulei Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of efficient methods for suppressing the invasive alien tree species, Akagi, in the Ogasawara Islands, and environmental impact assessment
小笠原群岛外来入侵树种“赤城”的有效抑制方法开发及环境影响评价
  • 批准号:
    23K18541
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Methods development using terrestrial LiDAR for the assessment of forest structures at the tree and stand levels
使用地面激光雷达评估树木和林分水平森林结构的方法开发
  • 批准号:
    RGPIN-2020-05780
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Tree-based methods for the multinomial logit model
用于多项 Logit 模型的基于树的方法
  • 批准号:
    573561-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    University Undergraduate Student Research Awards
Modelling multiple outcomes using tree-based methods in causal inference
在因果推理中使用基于树的方法对多个结果进行建模
  • 批准号:
    2576152
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Studentship
Methods development using terrestrial LiDAR for the assessment of forest structures at the tree and stand levels
使用地面激光雷达评估树木和林分水平森林结构的方法开发
  • 批准号:
    RGPIN-2020-05780
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Metabolomics with alternative decision tree-based machine learning methods for the prediction of cdk 4/6 inhibitor efficacy
使用基于替代决策树的机器学习方法的代谢组学用于预测 cdk 4/6 抑制剂功效
  • 批准号:
    21K08676
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of estimation methods for maximum depth and structure of tree roots using ground penetrating radar
利用探地雷达开发树根最大深度和结构估计方法
  • 批准号:
    20H03028
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Methods development using terrestrial LiDAR for the assessment of forest structures at the tree and stand levels
使用地面激光雷达评估树木和林分水平森林结构的方法开发
  • 批准号:
    RGPIN-2020-05780
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Methods development using terrestrial LiDAR for the assessment of forest structures at the tree and stand levels
使用地面激光雷达评估树木和林分水平森林结构的方法开发
  • 批准号:
    RGPIN-2014-04508
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Developing methods to detect and quantify hybridization across the tree of life.
开发检测和量化生命树杂交的方法。
  • 批准号:
    538373-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Banting Postdoctoral Fellowships Tri-council
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了