Network Time Series: From Dynamics to Coevolution
网络时间序列:从动力学到协同进化
基本信息
- 批准号:2113662
- 负责人:
- 金额:$ 22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The last few years have seen a large increase both in the amount of data on real-world networks in numerous research areas and the impact in people’s daily lives. One increasingly important field is in an area called network time series. Some examples include networks that evolve over time (dynamic or temporal networks), or time series over nodes in a network whose dynamics is intricately tied to the underlying network structure; and time series over dynamic networks where the two structures coevolve. Applications specific to this project include social networks with social connections changing owing to social dynamics, vertex specific streams such as text influenced by other vertices, neuroscience with brain functional connectivity networks from fMRI signals and brain structural connectivity networks or sociology and urban planning with migration and economic flows over spatial networks. Despite concerted activity over the last decade, rigorous understanding of network time series models and their applicability in various domains is still challenging owing to the complex emergence of macroscopic structure through microscopic interaction rules between individual network components. The aim of this project is to develop general theoretical foundations for network time series to inform the application of statistical methodology as well as computational techniques in practice whilst being guided by PIs’ collaborations with domain scientists in the areas mentioned above. Additionally, the project will contribute to the training of students with an envisioned data science lab, populated in part by projects from this work providing vertical integration of research experiences. There are three major pillars to this project, arranged sequentially in order of complexity. (1) Network modulated time series. The focus is on multivariate nodal time series with an underlying, possibly latent static network structure. Motivated by recent work on network vector autoregressions, network factor and propagation of chaos models are studied as superior alternatives and extensions. Special cases of the models include opinion dynamics in social networks and network versions of Hodgkin-Huxley and FitzHugh-Nagumo models in neuroscience. Motivated by applications in urban planning, spatial versions of these models will be studied through large network asymptotics. (2) Dynamic networks driven by possibly latent multivariate time series. The PIs will work on their systematic analysis leveraging general time series methods and approaches, especially for discrete-valued time series. Temporal migration and economic flow networks form one targeted area of applications. (3) Co-evolving networks. The PIs study Network models in the scenario where multivariate time series are affected by the underlying network, which itself is affected by the multivariate time series. The PIs will develop mathematical techniques to understand various salient phenomena including the role of self-excitation (the greater the number of times a node interacts with a neighbor the higher the influence this neighbor has in the future including the creation of new connections) and information decay.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
过去几年,在许多研究领域中,现实世界网络的数据量和对人们日常生活的影响都有了大幅增加。一个日益重要的领域是在一个叫做网络时间序列的领域。一些例子包括随着时间的推移而演变的网络(动态或时间网络),或网络中节点的时间序列,其动态与底层网络结构错综复杂地联系在一起;以及两种结构共同进化的动态网络上的时间序列。该项目的具体应用包括:社会关系因社会动态而变化的社会网络;受其他顶点影响的文本等顶点特定流;从功能磁共振成像信号和大脑结构连接网络中获得脑功能连接网络的神经科学;通过空间网络进行迁移和经济流动的社会学和城市规划。尽管在过去十年中进行了协调一致的活动,但严格理解网络时间序列模型及其在各个领域的适用性仍然具有挑战性,因为单个网络组件之间的微观相互作用规则导致宏观结构的复杂出现。该项目的目的是发展网络时间序列的一般理论基础,以告知统计方法和计算技术在实践中的应用,同时由pi与上述领域的领域科学家合作指导。此外,该项目将有助于培养具有设想的数据科学实验室的学生,部分由本工作的项目提供垂直整合的研究经验。这个项目有三个主要支柱,按照复杂程度顺序排列。(1)网络调制时间序列。重点是多元节点时间序列与潜在的,可能潜在的静态网络结构。受近年来网络向量自回归研究的启发,混沌模型的网络因子和传播作为较好的替代和扩展进行了研究。这些模型的特殊案例包括社交网络中的意见动态和神经科学中霍奇金-赫胥黎模型和菲茨休-南云模型的网络版本。在城市规划应用的激励下,这些模型的空间版本将通过大网络渐近来研究。(2)潜在多元时间序列驱动的动态网络。pi将利用一般的时间序列方法和方法进行系统分析,特别是离散值时间序列。时间迁移和经济流动网络形成了一个目标应用领域。(3)协同进化网络。pi研究的是多变量时间序列受底层网络影响的情况下的网络模型,底层网络本身也受多变量时间序列的影响。pi将开发数学技术来理解各种显著现象,包括自激励的作用(节点与邻居相互作用的次数越多,该邻居在未来的影响就越大,包括新连接的创建)和信息衰减。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learning attribute and homophily measures through random walks
通过随机游走学习属性和同质性度量
- DOI:10.1007/s41109-023-00558-3
- 发表时间:2023
- 期刊:
- 影响因子:2.2
- 作者:Antunes, Nelson;Banerjee, Sayan;Bhamidi, Shankar;Pipiras, Vladas
- 通讯作者:Pipiras, Vladas
Fluctuation bounds for continuous time branching processes and evolution of growing trees with a change point
连续时间分支过程的波动界限和具有变化点的生长树的演化
- DOI:10.1214/22-aap1881
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Banerjee, Sayan;Bhamidi, Shankar;Carmichael, Iain
- 通讯作者:Carmichael, Iain
Improved baselines for causal structure learning on interventional data
- DOI:10.1007/s11222-023-10257-9
- 发表时间:2023-10-01
- 期刊:
- 影响因子:2.2
- 作者:Richter,Robin;Bhamidi,Shankar;Mukherjee,Sach
- 通讯作者:Mukherjee,Sach
A Conversation with David J. Aldous
与大卫·奥尔德斯的对话
- DOI:10.1214/22-sts849
- 发表时间:2022
- 期刊:
- 影响因子:5.7
- 作者:Bhamidi, Shankar
- 通讯作者:Bhamidi, Shankar
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vladas Pipiras其他文献
Distributions and extreme value analysis of critical response rate and split-time metric in nonlinear oscillators with stochastic excitation
- DOI:
10.1016/j.oceaneng.2023.116538 - 发表时间:
2024-01-15 - 期刊:
- 影响因子:
- 作者:
Dylan Glotzer;Vladas Pipiras;Vadim Belenky;Kenneth M. Weems;Themistoklis P. Sapsis - 通讯作者:
Themistoklis P. Sapsis
Calibration of low-fidelity ship motion programs through regressions of high-fidelity forces
- DOI:
10.1016/j.oceaneng.2023.116321 - 发表时间:
2023-12-15 - 期刊:
- 影响因子:
- 作者:
Minji Kim;Vladas Pipiras;Arthur M. Reed;Kenneth Weems - 通讯作者:
Kenneth Weems
Dilated Fractional Stable Motions
- DOI:
10.1023/b:jotp.0000020475.95139.37 - 发表时间:
2004-01-01 - 期刊:
- 影响因子:0.600
- 作者:
Vladas Pipiras;Murad S. Taqqu - 通讯作者:
Murad S. Taqqu
Estimation of probability of large roll angle with envelope peaks over threshold method
- DOI:
10.1016/j.oceaneng.2023.116296 - 发表时间:
2023-12-15 - 期刊:
- 影响因子:
- 作者:
Bradley Campbell;Vadim Belenky;Vladas Pipiras;Kenneth Weems;Themistoklis P. Sapsis - 通讯作者:
Themistoklis P. Sapsis
Small and Large Scale Asymptotics of some Lévy Stochastic Integrals
- DOI:
10.1007/s11009-007-9052-4 - 发表时间:
2007-11-16 - 期刊:
- 影响因子:1.000
- 作者:
Vladas Pipiras;Murad S. Taqqu - 通讯作者:
Murad S. Taqqu
Vladas Pipiras的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vladas Pipiras', 18)}}的其他基金
Statistical Models, Inference, and Computation for Multidimensional Time Series Data
多维时间序列数据的统计模型、推理和计算
- 批准号:
1712966 - 财政年份:2017
- 资助金额:
$ 22万 - 项目类别:
Continuing Grant
Collaborative Research: Heavy Traffic Limit Models and Control Analysis for Wireless Queuing Systems - incorporating Long-Range Dependence and Heavy Tails
合作研究:无线排队系统的大流量限制模型和控制分析 - 结合远程依赖和重尾
- 批准号:
0608663 - 财政年份:2006
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Random Processes and Fields: Discrete Approximations, Special Wavelet-Based Decompositions and Simulation
随机过程和场:离散近似、基于特殊小波的分解和模拟
- 批准号:
0505628 - 财政年份:2005
- 资助金额:
$ 22万 - 项目类别:
Continuing Grant
相似国自然基金
SERS探针诱导TAM重编程调控头颈鳞癌TIME的研究
- 批准号:82360504
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
华蟾素调节PCSK9介导的胆固醇代谢重塑TIME增效aPD-L1治疗肝癌的作用机制研究
- 批准号:82305023
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于MRI的机器学习模型预测直肠癌TIME中胶原蛋白水平及其对免疫T细胞调控作用的研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
结直肠癌TIME多模态分子影像分析结合深度学习实现疗效评估和预后预测
- 批准号:62171167
- 批准年份:2021
- 资助金额:57 万元
- 项目类别:面上项目
Time-lapse培养对人类胚胎植入前印记基因DNA甲基化的影响研究
- 批准号:
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
萱草花开放时间(Flower Opening Time)的生物钟调控机制研究
- 批准号:31971706
- 批准年份:2019
- 资助金额:59.0 万元
- 项目类别:面上项目
Time-of-Flight深度相机多径干扰问题的研究
- 批准号:61901435
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
Finite-time Lyapunov 函数和耦合系统的稳定性分析
- 批准号:11701533
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
建筑工程计划中Time Buffer 的形成和分配 – 工程项目管理中的社会性研究
- 批准号:71671098
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
光学Parity-Time对称系统中破坏点的全光调控特性研究
- 批准号:11504059
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Network Stochastic Processes and Time Series (NeST)
网络随机过程和时间序列 (NeST)
- 批准号:
EP/X002195/1 - 财政年份:2022
- 资助金额:
$ 22万 - 项目类别:
Research Grant
Network Informed Methods for High Dimensional Time Series
高维时间序列的网络知情方法
- 批准号:
2748527 - 财政年份:2022
- 资助金额:
$ 22万 - 项目类别:
Studentship
Time-Series Statistical Applications to Mammalian Cerebral Physiology for Understanding Network Relations and Building State-Space Projections
哺乳动物大脑生理学的时间序列统计应用,用于理解网络关系和构建状态空间投影
- 批准号:
576386-2022 - 财政年份:2022
- 资助金额:
$ 22万 - 项目类别:
Alliance Grants
Novel methods for network-structured time series modelling
网络结构时间序列建模的新方法
- 批准号:
2751518 - 财政年份:2022
- 资助金额:
$ 22万 - 项目类别:
Studentship
Improving Neural Network Explainability for Time Series through in-distribution obfuscation strategies
通过分布内混淆策略提高时间序列的神经网络可解释性
- 批准号:
2646252 - 财政年份:2022
- 资助金额:
$ 22万 - 项目类别:
Studentship
Time-series analysis in EEG phase synchronization based on time-varying network modeling
基于时变网络建模的脑电相位同步时间序列分析
- 批准号:
20K19867 - 财政年份:2020
- 资助金额:
$ 22万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Approaching Modern Problems in Multivariate Time Series via Network Modelling and State-Space Methods.
通过网络建模和状态空间方法解决多元时间序列中的现代问题。
- 批准号:
2440162 - 财政年份:2020
- 资助金额:
$ 22万 - 项目类别:
Studentship
Adaptive machine learning for pattern extraction and network analysis in time-series data
用于时间序列数据中的模式提取和网络分析的自适应机器学习
- 批准号:
2437074 - 财政年份:2020
- 资助金额:
$ 22万 - 项目类别:
Studentship
CRII: CIF: Dynamic Network Event Detection with Time-Series Data
CRII:CIF:使用时间序列数据进行动态网络事件检测
- 批准号:
1948165 - 财政年份:2020
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
RAPID: COVID-19 Transmission Network Reconstruction from Time-Series Data
RAPID:根据时间序列数据重建 COVID-19 传输网络
- 批准号:
2030096 - 财政年份:2020
- 资助金额:
$ 22万 - 项目类别:
Standard Grant














{{item.name}}会员




