RAPID: COVID-19 Transmission Network Reconstruction from Time-Series Data
RAPID:根据时间序列数据重建 COVID-19 传输网络
基本信息
- 批准号:2030096
- 负责人:
- 金额:$ 16.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-15 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Covid-19 has spread rapidly since it was detected in Hubei province in China. To estimate potential impact of Covid-19, researchers have employed models to predict numbers of people infected, and the potential morbidity caused by the virus. Importantly, results from models guide policies for controlling the spread of the COVID-19 virus, where it is also recognized that conclusions reached vary considerably based on the model being employed. Here, for effective mitigation and prediction of the spread of the virus it is important to construct the transmission network of COVID-19 which informs the routes the virus takes in introducing or re-introducing infections to different regions and populations. An accurate estimate of the transmission network will help in developing models with higher fidelity and accuracy and can help in effective mitigation strategies. The project will develop a data-driven approach for reconstruction of transmission network of COVID-19, to complement and aid model-based approaches. Here, relative interdependence and independence of infection in a region from other infections in other regions estimated solely from data history will be employed. Such a data-driven approach has the potential to evolve significant complementary insights and guide strategies for COVID-19 mitigation.There are numerous parametric models being employed to analyze/predict evolution of the Covid-19 based viral infection. In this project, the focus is to unravel the evolution of the transmission network of infections as inferred from data. A primary approach is based on filtering and multivariate optimal estimation. The first step of the methodology is to identify the pathway by which an agent can affect another agent where all intermediate agents that facilitate transmission of infection from one agent to another are identified. In the second step the focus is on estimating the dynamics of the transmission whereby aspects such as the delay in expression of infection from the time the agent encounters an infected agent are unraveled. Tools from graphical models and their relationship to filtering over networks will be brought to bear on the problem. The data-driven algorithms are agnostic to models bringing complimentary set of insights into the Covid-19 transmission from the model-based approaches currently being employed. The filtering/optimization-based methods will be used on data generated by standard epidemiological models such as the Susceptible-Infected-Removed models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
新冠病毒自在中国湖北省被发现以来,传播迅速。为了估计Covid-19的潜在影响,研究人员使用模型来预测感染人数以及由该病毒引起的潜在发病率。重要的是,模型的结果指导了控制COVID-19病毒传播的政策,人们还认识到,所采用的模型不同,得出的结论差异很大。因此,为有效缓解和预测病毒的传播,构建COVID-19传播网络至关重要,该网络告知病毒在不同地区和人群中引入或再引入感染的途径。对输电网络的准确估计将有助于开发具有更高保真度和准确性的模型,并有助于制定有效的缓解战略。该项目将开发一种数据驱动的方法来重建COVID-19传播网络,以补充和辅助基于模型的方法。在这里,一个地区的感染与仅根据历史数据估计的其他地区的感染的相对相互依赖和独立性将被采用。这种数据驱动的方法有可能形成重要的互补见解,并指导缓解COVID-19的战略。有许多参数模型被用来分析/预测基于Covid-19的病毒感染的演变。在这个项目中,重点是从数据中推断出感染传播网络的演变。一种主要的方法是基于滤波和多元最优估计。该方法的第一步是确定一种媒介影响另一种媒介的途径,其中确定了促进感染从一种媒介传播到另一种媒介的所有中间媒介。在第二步中,重点是估计传播的动力学,从而揭示诸如从病原体遇到受感染病原体时开始的感染表达延迟等方面。从图形模型及其与网络过滤的关系的工具将被用于解决这个问题。数据驱动的算法与模型无关,这些模型从目前采用的基于模型的方法中获得了对Covid-19传播的一套补充见解。基于过滤/优化的方法将用于标准流行病学模型(如易感-感染-去除模型)生成的数据。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Topology Learning of Linear Dynamical Systems With Latent Nodes Using Matrix Decomposition
- DOI:10.1109/tac.2021.3124979
- 发表时间:2019-12
- 期刊:
- 影响因子:6.8
- 作者:M. S. Veedu;Harish Doddi;M. Salapaka
- 通讯作者:M. S. Veedu;Harish Doddi;M. Salapaka
Efficient and passive learning of networked dynamical systems driven by non-white exogenous inputs
非白人外源输入驱动的网络动力系统的高效和被动学习
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Harish Doddi, Deepjyoti Deka
- 通讯作者:Harish Doddi, Deepjyoti Deka
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Murti Salapaka其他文献
Murti Salapaka的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Murti Salapaka', 18)}}的其他基金
The 9th Midwest Workshop on Control and Game Theory, April 22-23, 2023
第九届中西部控制与博弈论研讨会,2023 年 4 月 22-23 日
- 批准号:
2318371 - 财政年份:2023
- 资助金额:
$ 16.07万 - 项目类别:
Standard Grant
Energy Efficiency in Computing Logical Operations: Fundamental Limits with and Without Feedback
计算逻辑运算的能源效率:有反馈和无反馈的基本限制
- 批准号:
1809194 - 财政年份:2018
- 资助金额:
$ 16.07万 - 项目类别:
Standard Grant
Collaborative Research: Understanding Thermal-Noise-Based Mechanisms for Intracellular Motion, with Application to Engineered Systems
合作研究:了解基于热噪声的细胞内运动机制,并应用于工程系统
- 批准号:
1462862 - 财政年份:2015
- 资助金额:
$ 16.07万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Learning from cells to create transportation infrastructure at the micron scale
CPS:协同:协作研究:向细胞学习以创建微米级的交通基础设施
- 批准号:
1544721 - 财政年份:2015
- 资助金额:
$ 16.07万 - 项目类别:
Standard Grant
Enabling Probe Based Nanointerrogation: A systems and controls approach
实现基于探针的纳米询问:一种系统和控制方法
- 批准号:
1202411 - 财政年份:2012
- 资助金额:
$ 16.07万 - 项目类别:
Continuing Grant
CIF: Small: Collaborative Research: Signal processing for enabling high speed probe based nanoimaging
CIF:小型:协作研究:用于实现基于高速探针的纳米成像的信号处理
- 批准号:
1116971 - 财政年份:2011
- 资助金额:
$ 16.07万 - 项目类别:
Standard Grant
Less Conservative Criteria for Analysis and Synthesis of Nonlinear Systems
非线性系统分析和综合的不太保守的标准
- 批准号:
0900113 - 财政年份:2009
- 资助金额:
$ 16.07万 - 项目类别:
Standard Grant
Collaborative Research: Dynamic Mode, High Density, Probe Based Data Storage
协作研究:动态模式、高密度、基于探针的数据存储
- 批准号:
0802117 - 财政年份:2008
- 资助金额:
$ 16.07万 - 项目类别:
Continuing Grant
Model-Based Ultrafast High Resolution Nano-Interrogation
基于模型的超快高分辨率纳米询问
- 批准号:
0814612 - 财政年份:2007
- 资助金额:
$ 16.07万 - 项目类别:
Standard Grant
Systems Approach to Dynamic Atomic Force Microscopy
动态原子力显微镜的系统方法
- 批准号:
0814615 - 财政年份:2007
- 资助金额:
$ 16.07万 - 项目类别:
Standard Grant
相似国自然基金
CEACAM5调控Galectin-9介导的CD4+T细胞极化在COVID-19肠屏障损伤的作用机制研究
- 批准号:82370569
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
COVID-19疫情对我国儿童生长发育影响的异质性研究
- 批准号:42371429
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
传染病模型的稳态切换过程研究及其在治疗COVID-19中的应用
- 批准号:LQ23A010016
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
“湿漫膜原”视角下研究加味达原饮重塑COVID-19“免疫炎症稳态”的分子机制:TLR4介导IRF3/NF-κB通路串扰
- 批准号:82374291
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
COVID-19中线粒体囊泡抑制CD8+T细胞记忆分化的机制研究
- 批准号:82300018
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
COVID-19疫情爆发后武汉地区儿童副流感病毒3型的流行趋势和进化规律研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于 GDF15-IL6 信号轴探究扶正解毒方逆转血管内皮衰老治疗COVID-19的作用与机制
- 批准号:82374392
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
多维不平稳和长记忆性的复杂整值时间序列的建模及其在Covid-19研究中的应用
- 批准号:12301358
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
COVID-19疫苗同源、异源加强剂次细胞免疫与体液免疫效应的前瞻性队列研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:10.0 万元
- 项目类别:省市级项目
基于人源细胞3D培养和精密肺切片技术探讨慢阻肺患者COVID-19易感机制研究
- 批准号:LY23H190003
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 16.07万 - 项目类别:
Standard Grant
Rapid learning during a public health emergency: COVID-19 related medication treatment patterns in Medicare
突发公共卫生事件期间的快速学习:医疗保险中与 COVID-19 相关的药物治疗模式
- 批准号:
10711497 - 财政年份:2023
- 资助金额:
$ 16.07万 - 项目类别:
Quantitative Detection of Coronary Microvascular Dysfunction in Long COVID Patients using a Comprehensive, Rapid, Free-Breathing Cardiovascular MRI
使用全面、快速、自由呼吸的心血管 MRI 定量检测长期新冠肺炎患者的冠状动脉微血管功能障碍
- 批准号:
10671235 - 财政年份:2023
- 资助金额:
$ 16.07万 - 项目类别:
Rapid diagnosis of COVID-19 and fungal infections using Raman barcodes
使用拉曼条形码快速诊断 COVID-19 和真菌感染
- 批准号:
23K09359 - 财政年份:2023
- 资助金额:
$ 16.07万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RAPID: Retrospective COVID-19 Scenario Projections Accounting for Population Heterogeneities
RAPID:考虑人口异质性的回顾性 COVID-19 情景预测
- 批准号:
2333494 - 财政年份:2023
- 资助金额:
$ 16.07万 - 项目类别:
Standard Grant
SBIR PA22-176 - RNA aptamers for rapid response to COVID-19 variants
SBIR PA22-176 - 用于快速响应 COVID-19 变体的 RNA 适体
- 批准号:
10758405 - 财政年份:2023
- 资助金额:
$ 16.07万 - 项目类别:
FDA Vet-LIRN Capacity-Building of Ohio ADDL to support rapid testing for COVID-19
FDA Vet-LIRN 俄亥俄州 ADDL 能力建设支持快速检测 COVID-19
- 批准号:
10829119 - 财政年份:2023
- 资助金额:
$ 16.07万 - 项目类别:
RAPID: Collaborative Research: Providing useable COVID-19 health information to linguistically underserved people
RAPID:协作研究:为语言服务不足的人群提供可用的 COVID-19 健康信息
- 批准号:
2331607 - 财政年份:2023
- 资助金额:
$ 16.07万 - 项目类别:
Standard Grant
RAPID: Data-driven Understanding of Imperfect Protection for Long-term COVID-19 Projections
RAPID:数据驱动的对长期 COVID-19 预测不完美保护的理解
- 批准号:
2223933 - 财政年份:2022
- 资助金额:
$ 16.07万 - 项目类别:
Standard Grant
RAPID: STEM faculty support to address impacts from COVID-19 on Tribal Colleges and Universities Program institutions
RAPID:STEM 教职员工支持解决 COVID-19 对部落学院和大学项目机构的影响
- 批准号:
2213457 - 财政年份:2022
- 资助金额:
$ 16.07万 - 项目类别:
Standard Grant