Collaborative Research: Experimental constraints on the solidification time scales and fragmentation of submarine lava flows

合作研究:海底熔岩流凝固时间尺度和破碎的实验约束

基本信息

  • 批准号:
    2113770
  • 负责人:
  • 金额:
    $ 6.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Fragmentation of Submarine Lava FlowsAbout 75 percent of volcanoes on Earth erupt under submarine conditions. This project deals with investigating the interaction between submarine lava flows and seawater. As lava comes in direct contact with seawater during submarine volcanic eruptions, the water cools the lava rapidly causing the formation of solid crust on its surface. This affects the rates of submarine lava flows, and the formation of lava flow morphologies. Poor understanding of lava cooling time scales is a significant gap in our ability to model the dynamics of submarine lava flows. Using laboratory experiments with melted natural rocks, this project will investigate the effects of salinity, speed, and temperature of water on the solidification time scales of lavas with a range of compositions. The preliminary results indicate that a film of water vapor forms as soon as it comes in direct contact with the hot lava sample. Depending on the lava and water temperatures, the vapor film breaks down forming numerous bubbles at the lava-water interface and changing the rate of heat loss from the sample. This project will (1) investigate the onset and stability of vapor film during the cooling of lava, (2) quantify the cooling time scales for a range of lava and water temperatures, (3) investigate the effects of water salinity, water speed and lava composition on the cooling of lava, (4) evaluate how submarine lava flow morphologies are formed. This project will train undergraduate and graduate students, and will provide research support to early career investigators. The state-of-the-art experimental facility will be uniquely placed in the southwest US facilitating national and international collaborations. Understanding the conditions behind the formation of lava morphologies is important for estimating effusion rates and dynamics of submarine lava flows. The heat flux from lava to external water is one of the key quantities that govern the solidification time scales and thus the flow dynamics of submarine lavas. The direct field measurement of heat flux at the interface of lava and water is currently absent. Current models assume a convective water flow regime or use heat flux parameters from existing metal-to-water heat transfer studies in order to estimate the rate of heat transfer from lava to water. Due to much lower thermal conductivity of lava as compared to metals, the existing heat transfer formulations from metal-to-water heat transfer studies require experimental validation, and if necessary, new theoretical frameworks need to be developed. This project will use a novel experimental approach to quantify the lava cooling rates in the presence of external water using lava samples from remelted rocks of silicic to mafic compositions. The water boiling regimes and their duration in direct contact with hot lava will be determined from the experiments. The temperature, speed and salinity of water will be varied for a range suitable under submarine conditions. The temperature-dependent thermophysical properties of the experimental samples will be measured. Using these well-constrained properties of the lava sample in the heat transfer model, the convective heat flux from lava to water will be estimated. By integrating experimental and numerical analyses with theoretical development, the project will provide a holistic approach for studying the solidification time scales of lava in the presence of external water. New theoretical frameworks for heat transfer from thermally poor conductive lava to external water will be developed in this project. This will advance our understanding of submarine lava solidification time scales, and will thus provide an important basis to improve our understanding of the dynamics of submarine volcanic eruptions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项的全部或部分资金来自《2021年美国救援计划法案》(公法117-2)。海底熔岩流的碎片地球上约75%的火山在海底条件下喷发。该项目研究海底熔岩流与海水之间的相互作用。当海底火山喷发期间熔岩与海水直接接触时,水会迅速冷却熔岩,导致其表面形成固体地壳。这会影响海底熔岩流动的速度,以及熔岩流动形态的形成。对熔岩冷却时间尺度的不了解是我们对海底熔岩流动动力学建模能力的一个重大差距。利用熔融天然岩石的实验室实验,该项目将研究水的盐度、速度和温度对一系列成分的熔岩凝固时间尺度的影响。初步结果表明,当水蒸气直接接触热熔岩样品时,就会形成一层水蒸气。根据熔岩和水的温度,蒸汽膜破裂,在熔岩-水界面形成大量气泡,并改变样品的热损失速率。该项目将(1)调查熔岩冷却过程中蒸汽膜的开始和稳定性,(2)量化一定范围的熔岩和水温的冷却时间尺度,(3)调查水盐度、水速和熔岩成分对熔岩冷却的影响,(4)评估海底熔岩流形态是如何形成的。该项目将培养本科生和研究生,并将为早期职业调查人员提供研究支持。最先进的实验设施将独特地放置在美国西南部,促进国内和国际合作。了解熔岩形态形成背后的条件对于估计海底熔岩流的流出速率和动力学很重要。从熔岩到外部水的热通量是控制海底熔岩凝固时间尺度和流动动力学的关键参数之一。目前还缺乏对熔岩和水界面热通量的直接现场测量。目前的模型假定为对流水流动状态,或者使用现有的金属到水的热传递研究中的热流参数,以估计从熔岩到水的热传递的速率。由于熔岩的导热系数比金属低得多,现有的金属-水热传递研究中的热传递公式需要实验验证,如果必要,需要开发新的理论框架。该项目将使用一种新的实验方法来量化在外部水存在的情况下熔岩的冷却速度,使用从硅质重熔岩石到镁铁质成分的熔岩样本。水的沸腾状态及其与热熔岩直接接触的持续时间将从实验中确定。水的温度、速度和盐度将在适合潜艇条件的范围内变化。将测量实验样品随温度变化的热物理性质。利用熔岩样品在传热模型中的这些良好约束性质,将估计从熔岩到水的对流热通量。通过将实验和数值分析与理论发展相结合,该项目将为研究存在外部水的熔岩的凝固时间尺度提供一种全面的方法。在这个项目中,将建立从导热不良的熔岩到外部水的热传递的新的理论框架。这将促进我们对海底熔岩凝固时间尺度的了解,从而为我们更好地了解海底火山喷发的动力学提供重要基础。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Experimental constraints on the stability and oscillation of water vapor film—a precursor for phreatomagmatic and explosive submarine eruptions
水蒸气膜稳定性和振荡的实验限制——水蒸气膜喷发和爆炸性海底喷发的前兆
  • DOI:
    10.3389/feart.2022.983112
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Sonder, Ingo;Moitra, Pranabendu
  • 通讯作者:
    Moitra, Pranabendu
Vapor Bubbles and Velocity Control on the Cooling Rates of Lava and Pyroclasts During Submarine Eruptions
海底喷发期间熔岩和火山碎屑冷却速率的蒸气泡和速度控制
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ingo Sonder其他文献

Ingo Sonder的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ingo Sonder', 18)}}的其他基金

EAGER: Test of Concept for Induced Fuel-Coolant Interaction Experiments with Bubbly Melt
EAGER:利用气泡熔体诱导燃料-冷却剂相互作用实验的概念测试
  • 批准号:
    2224032
  • 财政年份:
    2022
  • 资助金额:
    $ 6.06万
  • 项目类别:
    Standard Grant
Collaborative Research: Transport of magma in the near surface at small volcanoes- Experimental intrusion of basaltic melt into unconsolidated sediments
合作研究:小火山近地表岩浆输送——玄武岩熔体侵入松散沉积物的实验
  • 批准号:
    2032174
  • 财政年份:
    2021
  • 资助金额:
    $ 6.06万
  • 项目类别:
    Standard Grant
EAGER; Exploratory Research for a Mass Flow Apparatus Facility
渴望的;
  • 批准号:
    1464308
  • 财政年份:
    2015
  • 资助金额:
    $ 6.06万
  • 项目类别:
    Standard Grant
Large Scale Molten Fuel Coolant Interaction Experiments: Explosion Initiation and Propagation
大规模熔融燃料冷却剂相互作用实验:爆炸引发和传播
  • 批准号:
    1347992
  • 财政年份:
    2014
  • 资助金额:
    $ 6.06万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134594
  • 财政年份:
    2024
  • 资助金额:
    $ 6.06万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134747
  • 财政年份:
    2024
  • 资助金额:
    $ 6.06万
  • 项目类别:
    Standard Grant
Collaborative Research: Effect of Vertical Accelerations on the Seismic Performance of Steel Building Components: An Experimental and Numerical Study
合作研究:垂直加速度对钢建筑构件抗震性能的影响:实验和数值研究
  • 批准号:
    2244696
  • 财政年份:
    2023
  • 资助金额:
    $ 6.06万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 6.06万
  • 项目类别:
    Continuing Grant
Collaborative Research: High-velocity and long-displacement stick-slips: Experimental analogs of earthquake rupture and the seismic cycle
合作研究:高速和长位移粘滑运动:地震破裂和地震周期的实验模拟
  • 批准号:
    2240418
  • 财政年份:
    2023
  • 资助金额:
    $ 6.06万
  • 项目类别:
    Continuing Grant
Collaborative Research: Experimental and computational constraints on the isotope fractionation of Mossbauer-inactive elements in mantle minerals
合作研究:地幔矿物中穆斯堡尔非活性元素同位素分馏的实验和计算约束
  • 批准号:
    2246686
  • 财政年份:
    2023
  • 资助金额:
    $ 6.06万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
  • 批准号:
    2148678
  • 财政年份:
    2023
  • 资助金额:
    $ 6.06万
  • 项目类别:
    Standard Grant
Collaborative Research: Enhancing Chemoselectivity and Efficiency Through Control of Axial Coordination in Rh(II) Complexes: An Experimental and Computational Approach
合作研究:通过控制 Rh(II) 配合物的轴向配位提高化学选择性和效率:实验和计算方法
  • 批准号:
    2247836
  • 财政年份:
    2023
  • 资助金额:
    $ 6.06万
  • 项目类别:
    Standard Grant
Collaborative Research: Experimental General Relativity using Radio Interferometry of a Black Hole Photon Ring
合作研究:利用黑洞光子环射电干涉测量的实验广义相对论
  • 批准号:
    2307887
  • 财政年份:
    2023
  • 资助金额:
    $ 6.06万
  • 项目类别:
    Standard Grant
Collaborative Research: Experimental and computational constraints on the isotope fractionation of Mossbauer-inactive elements in mantle minerals
合作研究:地幔矿物中穆斯堡尔非活性元素同位素分馏的实验和计算约束
  • 批准号:
    2246687
  • 财政年份:
    2023
  • 资助金额:
    $ 6.06万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了