Collaborative Research: Understanding Material Transfer Mechanisms in Corona-Enabled Contactless Electrostatic Printing of Binder-free Nano-/micro-Structures

合作研究:了解无粘合剂纳米/微米结构的电晕非接触式静电印刷中的材料转移机制

基本信息

  • 批准号:
    2114216
  • 负责人:
  • 金额:
    $ 30.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Printed electronics have a potential to transform the public health, the national security, and society as a whole. Manufacturing innovations are essential to enable cost-effective and scalable production, enhance the performance of printed electronics, and realize their broad applications. Current printing techniques, however, still face long-lasting challenges in addressing the tradeoff between the printing speed versus the print resolution and performance. This award supports fundamental research to advance a novel corona-enabled contactless electrostatic printing (CEP) technique that utilizes the ultra-fast electrostatic attraction phenomenon to achieve the material transfer and manufacturing of binder-free nano-/micro-structures at a large scale. The contactless force control and binder-free nature lead to reduced manufacturing times and temperatures, with broader material options, and an ability to manipulate and assemble nano-/micro-structures, and improved device performance. The roll-to-roll compatibility of the CEP process may also facilitate a pathway for transition from fundamental research to commercial marketplaces, potentially beneficial to large-area and high-performance electronics and versatile applications of flexible functional systems. Through a close collaboration between an R1 university and a minority-serving institution, with additionally an industrial partner, this project also provides hands-on research opportunities and industrial experiences to minority undergraduate students and hosts “Future Electronics” community engagement workshops to local high schools, intended to inspire more students and engineers to participate in, benefit from, and contribute to the blooming U.S. electronics industry.To advance the CEP process, the project will focus on three basic research thrusts by a combination of numerical and experimental approaches. First, through mapping the distribution of charges and computing the distribution of the electric field, the formation and dynamic evolution mechanisms of the electric field will be revealed, which is essential to achieve precision controls. Then, the material transfer mechanism during the CEP process will be studied by investigating the impacts of the material conductivity, geometry and density. The project will also explore methodologies to manufacture aligned nano-/micro-structures by combining an electric field with a mechanical field. Further, the responsive mechanisms of the printed structures to external stimuli will be studied by monitoring the microstructure evolution and electrical performance simultaneously, together with the effects on the performance of the binder-free CEP electronics. Overall, the fundamental understanding of the CEP process is expected to substantially enhance the capability to precisely control an electric field to realize ultra-fast material manipulations, nano-/micro-structure constructions, and high-end electronics manufacturing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
印刷电子产品具有改变公共健康、国家安全和整个社会的潜力。制造创新对于实现低成本和可扩展的生产、提高印刷电子产品的性能和实现其广泛应用至关重要。然而,当前的打印技术在解决打印速度与打印分辨率和性能之间的权衡方面仍然面临长期的挑战。该奖项支持基础研究,以推进一种新型的电晕启用非接触式静电打印(CEP)技术,该技术利用超高速静电吸引现象来实现材料转移和大规模制造无粘结剂的纳米/微结构。非接触式力控制和无粘结剂特性减少了制造时间和温度,具有更广泛的材料选择,并具有操纵和组装纳米/微结构的能力,并提高了器件性能。CEP工艺的卷到卷兼容性也可能促进从基础研究过渡到商业市场的途径,潜在地有利于大面积和高性能电子产品以及灵活功能系统的多功能应用。通过一所R1大学和一所为少数族裔服务的机构以及另外一个工业合作伙伴的密切合作,该项目还为少数族裔本科生提供实践研究机会和工业经验,并为当地高中举办“未来电子”社区参与研讨会,旨在激励更多的学生和工程师参与并受益于蓬勃发展的美国电子行业,并为其做出贡献。为了推进CEP进程,该项目将通过数值和实验相结合的方法,专注于三个基础研究推进。首先,通过绘制电荷分布图和计算电场分布,揭示电场的形成和动态演化机理,这对于实现精确控制是必不可少的。然后,通过研究材料的电导率、几何形状和密度对CEP过程的影响,研究了CEP过程中的材料传递机理。该项目还将探索通过将电场与机械场相结合来制造定向纳米/微结构的方法。此外,通过同时监测印刷结构的微观结构演变和电性能,以及对无粘结剂CEP电子性能的影响,将研究印刷结构对外部刺激的响应机制。总体而言,对CEP过程的基本理解预计将大大增强精确控制电场以实现超快材料操纵、纳米/微结构构建和高端电子制造的能力。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Automated corona discharge (CD) for efficient and broad-spectrum surface and air sterilization
  • DOI:
    10.1039/d3tc00558e
  • 发表时间:
    2023-07-19
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Narayanan,Sriram S. K. S.;Weng,Zijian;Zhong,Ying
  • 通讯作者:
    Zhong,Ying
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wenbin Mao其他文献

Kupferkatalysierte regio‐ und enantioselektive Addition von Silicium‐Grignard‐Reagenzien an durch Azaarylgruppen aktivierte Alkene
硅-格氏试剂与氮杂芳基活性烯烃的 Kupferkatalysierte 区域和对映选择性加成
  • DOI:
    10.1002/ange.201905934
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wenbin Mao;Weichao Xue;Elisabeth Irran;Martin Oestreich
  • 通讯作者:
    Martin Oestreich
Adaptive coupling induced recurrence of phase coalescence
自适应耦合引起的相位合并复发
  • DOI:
    10.1016/j.chaos.2025.116797
  • 发表时间:
    2025-10-01
  • 期刊:
  • 影响因子:
    5.600
  • 作者:
    Guoshen Liang;Wenbin Mao;Yong Zou;Zonghua Liu
  • 通讯作者:
    Zonghua Liu
Rhodium-Catalyzed C–C Bond Olefination of Ring-Fused Benzocyclobutenols and Application in the Construction of Polycyclic Compounds
铑催化稠环苯并环丁烯醇C-C键烯化及其在多环化合物构建中的应用
  • DOI:
    10.1055/s-0036-1590830
  • 发表时间:
    2017-07
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Wenbin Mao;Chen Zhu
  • 通讯作者:
    Chen Zhu
Rhodium-Catalyzed C–C Bond Olefination of Ring-Fused Benzocyclobutenols and Application in the Construction of Polycyclic Compounds
  • DOI:
    DOI: 10.1055/s-0036-1590830
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
  • 作者:
    Wenbin Mao;Chen Zhu
  • 通讯作者:
    Chen Zhu
3D velocity and pressure field reconstruction in the cardiac left ventricle via physics informed neural network from echocardiography guided by 3D color Doppler
通过物理信息神经网络,依据三维彩色多普勒引导的超声心动图对心脏左心室进行三维速度和压力场重建
  • DOI:
    10.1016/j.cmpb.2025.108671
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    4.800
  • 作者:
    Hong Shen Wong;Wei Xuan Chan;Wenbin Mao;Choon Hwai Yap
  • 通讯作者:
    Choon Hwai Yap

Wenbin Mao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
  • 批准号:
    2318855
  • 财政年份:
    2024
  • 资助金额:
    $ 30.89万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding Environmental and Ecological Controls on Carbon Export and Flux Attenuation near Bermuda
合作研究:了解百慕大附近碳输出和通量衰减的环境和生态控制
  • 批准号:
    2318940
  • 财政年份:
    2024
  • 资助金额:
    $ 30.89万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327826
  • 财政年份:
    2024
  • 资助金额:
    $ 30.89万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding the Influence of Turbulent Processes on the Spatiotemporal Variability of Downslope Winds in Coastal Environments
合作研究:了解湍流过程对沿海环境下坡风时空变化的影响
  • 批准号:
    2331729
  • 财政年份:
    2024
  • 资助金额:
    $ 30.89万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
  • 批准号:
    2342025
  • 财政年份:
    2024
  • 资助金额:
    $ 30.89万
  • 项目类别:
    Standard Grant
Collaborative Research: Design: Strengthening Inclusion by Change in Building Equity, Diversity and Understanding (SICBEDU) in Integrative Biology
合作研究:设计:通过改变综合生物学中的公平、多样性和理解(SICBEDU)来加强包容性
  • 批准号:
    2335235
  • 财政年份:
    2024
  • 资助金额:
    $ 30.89万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327827
  • 财政年份:
    2024
  • 资助金额:
    $ 30.89万
  • 项目类别:
    Continuing Grant
Collaborative Research: Mechanistic understanding of chemomechanics in phase-changing electroceramics for sodium-ion batteries
合作研究:钠离子电池相变电陶瓷化学力学的机理理解
  • 批准号:
    2325464
  • 财政年份:
    2024
  • 资助金额:
    $ 30.89万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding New Labor Relations for the 21st Century
合作研究:理解21世纪的新型劳动关系
  • 批准号:
    2346230
  • 财政年份:
    2024
  • 资助金额:
    $ 30.89万
  • 项目类别:
    Standard Grant
Collaborative Research: Improved Understanding of Subduction Zone Tsunami Genesis Using Sea Floor Geodesy Offshore Central America
合作研究:利用中美洲近海海底大地测量学提高对俯冲带海啸成因的了解
  • 批准号:
    2314272
  • 财政年份:
    2024
  • 资助金额:
    $ 30.89万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了