Collaborative Research: CIF: FET: Small: Realizing Joint Detection Receivers for Quantum-enhanced Optical Communications using Photonic NISQ-era Quantum Processors
合作研究:CIF:FET:小型:使用光子 NISQ 时代量子处理器实现量子增强光通信的联合检测接收器
基本信息
- 批准号:2114294
- 负责人:
- 金额:$ 19.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Optical laser communication will constitute a key component of future space-based data communication systems including deep-space communications. It can support significantly higher data rates compared to traditional radio-frequency communication with lower size, weight and transmission power requirements. The ultimate data rates, or in other words, the communication capacity of long-range optical lasercom links, are governed by the laws of quantum physics. Novel receivers based on quantum physics are required in order to attain these ultimate data rates, which are fundamentally superior to the rates supported by conventional optical receivers. However, a structured methodology for designing optimal versions of such quantum receivers had remained unknown. A recently proposed quantum decoding algorithm known as belief propagation with quantum messages promises to be a near-optimal design methodology. The project will investigate the use of this algorithm to design quantum receivers for a large class of communication codes and optical modulation formats. The receiver designs are known to be in principle realizable on photonic quantum hardware. The proposed project will explore alternative implementations of the quantum logic required to realize the receiver circuitry on the commercially-available photonic quantum processor of Xanadu Quantum Technologies and determine the resource-optimal implementation. The success of this project would enable up to 5x higher optical communication rates over NASA’s future deep-space optical lasercom systems. Moreover, a successful realization of the receiver on Xanadu’s photonic processor would amount to a demonstration of quantum advantage over classical processing using a near-term noisy quantum processor in a practical application, which is an important quest in quantum information processing today. The proposed research will provide new content for a graduate course on quantum-enhanced classical optical communications. The project will augment the continued efforts of University of Arizona and University of Texas at Austin to provide educational and research opportunities to students from under-represented groups in the emerging field of quantum information technologies.The proposed project is aimed at designing and implementing quantum joint detection receivers (JDRs) for quantum-enhanced optical laser communication that involve pre-detection, collective, quantum-domain processing of blocks of received optical pulses. The design part of the project will utilize a quantum decoding algorithm, belief propagation with quantum messages (BPQM), which for a binary phase shift keying-modulated lasercom system based on an exemplary 5-bit tree code was recently shown to attain the quantum limit of minimum block decoding error probability. The BPQM algorithm will be investigated for low-density parity check codes and for different optical modulation formats. Pertaining to implementation, the BPQM-based JDR design for lasercom readily translates into a quantum circuit that is executable on a near-term, non-error-corrected, photonic, noisy intermediate-scale quantum (NISQ) processor capable of performing cat-basis quantum logic. Several alternative approaches are available to realize the elementary gates of cat-basis logic, among which the resource-optimal approach is unknown. In order to identify the optimal approach, as part of the project, theoretical and experimental noise models will be built for the basic building blocks of the different approaches using the photonic quantum hardware of Xanadu Quantum Technologies. The expected performance of the BPQM-based JDR for simple 3- and 5-bit tree code examples will be numerically simulated. A complete blueprint of the optical quantum circuit of the BPQM-JDR in terms of the identified optimal implementation of cat-basis logic for the 5-bit linear tree code will be developed and realized over Xanadu’s photonic quantum processor. Universal quantum-logic manipulation of modulated quantum light underlies a number of other quantum-enhanced classical communications and sensing applications, e.g., entanglement-assisted classical radio-frequency communications and sensors such as distributed clocks and long-baseline telescopes. NISQ-era photonic quantum hardware can potentially already power some of these applications but require a concerted quantum engineering effort to leverage their existing capabilities. The proposed project will accelerate this process for strong societal and economic impact.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
光学激光通信将构成未来天基数据通信系统包括深空通信的一个关键组成部分。与传统的射频通信相比,它可以支持更高的数据速率,同时具有更低的尺寸,重量和传输功率要求。最终的数据速率,或者换句话说,远程光学激光通信链路的通信容量,由量子物理定律决定。需要基于量子物理学的新型接收器以获得这些最终数据速率,其基本上上级于由常规光学接收器支持的速率。然而,设计这种量子接收器的最佳版本的结构化方法仍然是未知的。最近提出的量子解码算法称为量子信息的置信传播,有望成为一种接近最优的设计方法。该项目将研究使用该算法为一大类通信代码和光调制格式设计量子接收器。已知接收器设计原则上可在光子量子硬件上实现。拟议的项目将探索在Xanadu Quantum Technologies的商用光子量子处理器上实现接收器电路所需的量子逻辑的替代实现,并确定资源最佳实现。该项目的成功将使美国宇航局未来的深空光学激光通信系统的光通信速率提高5倍。此外,在Xanadu的光子处理器上成功实现接收器将相当于在实际应用中使用近期噪声量子处理器证明量子处理优于经典处理,这是当今量子信息处理的重要探索。该研究将为量子增强经典光通信研究生课程提供新的内容。该项目将加强亚利桑那大学和德克萨斯大学奥斯汀分校的持续努力,为新兴量子信息技术领域的学生提供教育和研究机会。拟议的项目旨在设计和实现量子联合检测接收机(JDR),用于量子增强光激光通信,涉及预检测,集体,接收光脉冲块的量子域处理。该项目的设计部分将利用量子解码算法,量子消息的置信传播(BPQM),最近显示,基于示例性5位树码的二进制相移键控调制激光通信系统达到最小块解码错误概率的量子极限。BPQM算法将研究低密度奇偶校验码和不同的光调制格式。关于实现,用于激光通信的基于BPQM的JDR设计很容易转换为量子电路,该量子电路可在能够执行猫基量子逻辑的短期、非纠错、光子、噪声中间尺度量子(NISQ)处理器上执行。有几种可选的方法可以实现猫基逻辑的基本门,其中资源优化的方法是未知的。为了确定最佳方法,作为该项目的一部分,将使用Xanadu Quantum Technologies的光子量子硬件为不同方法的基本构建块建立理论和实验噪声模型。基于BPQM的JDR对于简单的3位和5位树代码示例的预期性能将被数值模拟。将在Xanadu的光子量子处理器上开发和实现BPQM-JDR光量子电路的完整蓝图,以确定5位线性树码的猫基逻辑的最佳实现。调制量子光的通用量子逻辑操纵是许多其他量子增强经典通信和传感应用的基础,例如,纠缠辅助的经典射频通信和传感器,如分布式时钟和长基线望远镜。NISQ时代的光子量子硬件可能已经为其中一些应用提供了动力,但需要协调一致的量子工程努力来利用其现有的能力。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kaushik Seshadreesan其他文献
Kaushik Seshadreesan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kaushik Seshadreesan', 18)}}的其他基金
Collaborative Research: CIF: FET: Small: Realizing Joint Detection Receivers for Quantum-enhanced Optical Communications using Photonic NISQ-era Quantum Processors
合作研究:CIF:FET:小型:使用光子 NISQ 时代量子处理器实现量子增强光通信的联合检测接收器
- 批准号:
2204985 - 财政年份:2022
- 资助金额:
$ 19.41万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403122 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402815 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343599 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343600 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402817 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402816 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
- 批准号:
2326622 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403123 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
- 批准号:
2326621 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
- 批准号:
2312872 - 财政年份:2023
- 资助金额:
$ 19.41万 - 项目类别:
Standard Grant