GOALI: Collaborative Research: Generation versus Degradation: Striking the optimal balance for wind farm profitability via digitization, predictive and prescriptive analytics

目标:协作研究:发电与退化:通过数字化、预测性和规范性分析实现风电场盈利能力的最佳平衡

基本信息

  • 批准号:
    2114422
  • 负责人:
  • 金额:
    $ 22.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

The rapid increase in scale and sophistication of wind farms poses a critical challenge relating to the cost-effective management of wind energy assets. A defining characteristic of this challenge is the economic trade-off between two concomitant processes: electricity generation (the primary driver of short-term revenues) and asset degradation (the major determinant of long-term expenses). This NSF project aims to formulate a decision-theoretic approach to jointly optimize generation and maintenance in wind farms. The project will bring transformative change into the status-quo of asset management in the wind industry which, to-date, relies on single-faceted strategies that largely overlook the dependencies between the generation and degradation in wind turbine assets. The intellectual merits of the project include the formulation of novel data and decision science models, blended within a digitization platform, to predict and co-optimize operations and maintenance requirements. The broader impacts of the project include disseminating research findings via coursework, publications, data/software, and industry-academia workshops. A set of use case demonstrations, co-developed with industrial partners, will accelerate the translation of scientific knowledge into tangible industrial impact, in a step towards meeting the 35%-by-2050 U.S. wind energy target. Summer internships and undergraduate researchers, especially from underrepresented groups, will contribute towards educating the next-generation workforce in data, decision, and energy sciences.Without formally considering the intrinsic dependencies between electricity generation and asset degradation, wind farm operators reap sub-optimal benefits from their operations and maintenance policies. This project aims to formulate a decision-theoretic framework which seeks an optimal balance of how wind loads are leveraged to harness short-term generation revenues, versus alleviated to hedge against longer-term maintenance expenses. The framework comprises decision-aware predictive models for power and asset health degradation forecasting, integrated within mixed integer programs with decision-dependent uncertainty. New reformulations and constraints will ensure an effective predictive-prescriptive coupling, thereby enabling the optimization to search within the prediction space for an optimal prediction-decision pair. An end-to-end digital twin of the wind farm will bind the proposed predictive-prescriptive methodologies within an integrative asset management solution. Engagement of industrial partners and a national laboratory will ensure a sensible impact on asset management in the wind industry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
风力发电场规模和复杂程度的快速增长对风能资产的成本效益管理提出了严峻的挑战。这一挑战的一个决定性特征是两个伴随过程之间的经济权衡:发电(短期收入的主要驱动因素)和资产退化(长期费用的主要决定因素)。这个NSF项目旨在制定一种决策理论方法来共同优化风力发电场的发电和维护。该项目将给风电行业的资产管理现状带来革命性的变化,迄今为止,该行业的资产管理依赖于单一的战略,在很大程度上忽视了风力涡轮机资产的发电和退化之间的依赖关系。该项目的智力优势包括制定新的数据和决策科学模型,在数字化平台中混合,以预测和共同优化操作和维护需求。该项目的更广泛影响包括通过课程、出版物、数据/软件和产学研研讨会传播研究成果。与工业合作伙伴共同开发的一套用例演示将加速将科学知识转化为切实的工业影响,朝着实现到2050年美国风能占比35%的目标迈出了一步。暑期实习和本科生研究人员,特别是来自代表性不足的群体的研究人员,将有助于在数据、决策和能源科学方面教育下一代劳动力。如果没有正式考虑发电和资产退化之间的内在依赖关系,风电场运营商从其运营和维护政策中获得的收益就不是最优的。该项目旨在制定一个决策理论框架,寻求如何利用风力负荷来利用短期发电收入的最佳平衡,而不是减轻风力负荷以对冲长期维护费用。该框架包括用于电力和资产健康退化预测的决策感知预测模型,集成在具有决策依赖不确定性的混合整数规划中。新的重新表述和约束将确保有效的预测-规范耦合,从而使优化能够在预测空间中搜索最优的预测-决策对。风力发电场的端到端数字孪生将在综合资产管理解决方案中结合所提出的预测-规范方法。工业合作伙伴和国家实验室的参与将确保对风能行业的资产管理产生切实的影响。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Yaw-adjusted wind power curve modeling: A local regression approach
  • DOI:
    10.1016/j.renene.2022.12.001
  • 发表时间:
    2022-12-14
  • 期刊:
  • 影响因子:
    8.7
  • 作者:
    Nasery, Praanjal;Ezzat, Ahmed Aziz
  • 通讯作者:
    Ezzat, Ahmed Aziz
Seizing Opportunity: Maintenance Optimization in Offshore Wind Farms Considering Accessibility, Production, and Crew Dispatch
  • DOI:
    10.1109/tste.2021.3104982
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    P. Papadopoulos;D. Coit;A. Ezzat
  • 通讯作者:
    P. Papadopoulos;D. Coit;A. Ezzat
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ahmed Aziz Ezzat其他文献

Improved spatio-temporal offshore wind forecasting with coastal upwelling information
  • DOI:
    10.1016/j.apenergy.2024.125010
  • 发表时间:
    2025-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Feng Ye;Travis Miles;Ahmed Aziz Ezzat
  • 通讯作者:
    Ahmed Aziz Ezzat
AIRU-WRF: A physics-guided spatio-temporal wind forecasting model and its application to the U.S. Mid Atlantic offshore wind energy areas
  • DOI:
    10.1016/j.renene.2023.119934
  • 发表时间:
    2024-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Feng Ye;Joseph Brodie;Travis Miles;Ahmed Aziz Ezzat
  • 通讯作者:
    Ahmed Aziz Ezzat
Machine learning for modeling North Atlantic right whale presence to support offshore wind energy development in the U.S. Mid-Atlantic
用于模拟北大西洋露脊鲸存在情况以支持美国中大西洋地区海上风能开发的机器学习
  • DOI:
    10.1038/s41598-024-80084-z
  • 发表时间:
    2024-11-25
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Jiaxiang Ji;Jeeva Ramasamy;Laura Nazzaro;Josh Kohut;Ahmed Aziz Ezzat
  • 通讯作者:
    Ahmed Aziz Ezzat

Ahmed Aziz Ezzat的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Collaborative Research: GOALI: Bio-inspired bistable energy harvesting for fish telemetry tags
合作研究:GOALI:用于鱼类遥测标签的仿生双稳态能量收集
  • 批准号:
    2245117
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Instabilities and Local Strains in Engineered Cartilage Scaffold
GOALI/合作研究:工程软骨支架的不稳定性和局部应变
  • 批准号:
    2129825
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Instabilities and Local Strains in Engineered Cartilage Scaffold
GOALI/合作研究:工程软骨支架的不稳定性和局部应变
  • 批准号:
    2129776
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
DMREF: Collaborative Research: GOALI: Accelerating Discovery of High Entropy Silicates for Extreme Environments
DMREF:合作研究:GOALI:加速极端环境中高熵硅酸盐的发现
  • 批准号:
    2219788
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Control-Oriented Modeling and Predictive Control of High Efficiency Low-emission Natural Gas Engines
GOALI/协作研究:高效低排放天然气发动机的面向控制的建模和预测控制
  • 批准号:
    2302217
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Understanding Multiscale Mechanics of Cyclic Bending under Tension to Improve Elongation-to-Fracture of Hexagonal Metals
GOALI/合作研究:了解张力下循环弯曲的多尺度力学,以提高六方金属的断裂伸长率
  • 批准号:
    2147126
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Understanding Multiscale Mechanics of Cyclic Bending under Tension to Improve Elongation-to-Fracture of Hexagonal Metals
GOALI/合作研究:了解张力下循环弯曲的多尺度力学,以提高六方金属的断裂伸长率
  • 批准号:
    2147122
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: ISS: GOALI: Transients and Instabilities in Flow Boiling and Condensation Under Microgravity
合作研究:ISS:GOALI:微重力下流动沸腾和冷凝的瞬态和不稳定性
  • 批准号:
    2126461
  • 财政年份:
    2021
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research/GOALI: Fully Continuous Downstream Processing Enabled by Coupled Precipitation-Filtration Capture Operations
协作研究/GOALI:通过耦合沉淀-过滤捕获操作实现完全连续的下游处理
  • 批准号:
    2032261
  • 财政年份:
    2021
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research & GOALI: Direct-Fed Ethanol Metal-Supported Solid Oxide Fuel Cells
合作研究
  • 批准号:
    2050691
  • 财政年份:
    2021
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了