HNDS-R Collaborative Research: Measuring Belief Distortions to Improve Predictive Outcomes

HNDS-R 协作研究:测量信念扭曲以改善预测结果

基本信息

  • 批准号:
    2116641
  • 负责人:
  • 金额:
    $ 21.08万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-15 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Systematic expectational errors embedded in beliefs (belief distortions) can have important effects on the economy. This project aims to explore the relation between belief distortions and economic outcomes. The research will explore to what extent beliefs pertaining to key variables closely related to monetary policy, such as interest rates and financial aggregates, may be distorted. The project will also examine how the beliefs and sentiments voiced in polling, such as those pertaining to elections, may produce biased forecasts of election outcomes. In exploring these questions, the project will utilize textual data from written documents such as online news outlets and social media, and data from betting markets, which will further be combined with other economic indicators. By utilizing this data, the project will account for biases in surveyed expectations about the future path of monetary policy as well as the performance of polls and surveys in predicting financial market variables and election outcomes. The project will develop machine learning based methods to improve prediction and estimation in a range of settings that rely on surveys by uncovering systematic errors in survey responses, and by correcting these errors using artificial intelligence algorithms. These tools will provide considerable potential improvements in prediction accuracy of surveys in a variety of contexts in the economy.A fundamental challenge in addressing whether beliefs are biased is that no objective measure of such distortions exists. This research aims to address this challenge by leveraging advancements in machine learning. A general premise of the approach followed in this project is that big data algorithms can be productively employed to reveal subjective biases in human judgements in multiple contexts, thereby facilitating more accurate objective forecasts. The project will construct and study a comprehensive, methodologically consistent, econometric measure of belief distortions in expectations about future monetary policy and electoral outcomes, among other variables. This objective requires employment of large amounts of data related to real-time decision making and machine-learning tools to reduce sampling noise. Data scraped from written documents will be analyzed using a Latent Dirichlet Allocation type of model to extract high-frequency measures of the topics covered by news outlets and social media. Data about election outcomes, betting markets, and financial market futures contracts will be added to a large real time dataset of economic information. The research will then incorporate these methodologies and data to study beliefs and possible judgmental errors found in survey expectations related to the future conduct of monetary policy, the behavior of financial markets, and the outcomes of elections. The inclusion of fast-moving variables taken from options and futures markets and scraped from online documents will enable high-frequency tracking of revisions in beliefs and objective forecasts. This framework will allow high-frequency revisions in beliefs to be connected to specific news and announcements to improve prediction accuracy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
信念中的系统性预期错误(信念扭曲)会对经济产生重要影响。 该项目旨在探索信仰扭曲与经济结果之间的关系。研究将探讨与货币政策密切相关的关键变量(如利率和金融总量)相关的信念可能被扭曲的程度。该项目还将研究民意调查中表达的信念和情绪,例如与选举有关的信念和情绪,如何对选举结果产生有偏见的预测。在探索这些问题时,该项目将利用来自在线新闻媒体和社交媒体等书面文件的文本数据,以及来自博彩市场的数据,这些数据将进一步与其他经济指标相结合。通过利用这些数据,该项目将解释对货币政策未来路径的调查预期的偏差,以及民意调查和调查在预测金融市场变量和选举结果方面的表现。该项目将开发基于机器学习的方法,通过发现调查响应中的系统性错误,并使用人工智能算法纠正这些错误,来改善依赖调查的一系列环境中的预测和估计。这些工具将提供相当大的潜在改进的预测精度的调查在各种背景下的经济。一个根本的挑战,在解决信念是否有偏见的是,没有客观的措施,这种扭曲的存在。这项研究旨在通过利用机器学习的进步来应对这一挑战。该项目所遵循的方法的一个一般前提是,大数据算法可以有效地用于揭示人类在多种情况下判断的主观偏见,从而促进更准确的客观预测。该项目将构建和研究一个全面的,方法上一致的,计量经济学的措施,对未来的货币政策和选举结果的预期,除其他变量的信念扭曲。这一目标需要使用与实时决策相关的大量数据和机器学习工具来减少采样噪声。从书面文件中提取的数据将使用潜在狄利克雷分配模型进行分析,以提取新闻媒体和社交媒体所涵盖主题的高频指标。有关选举结果、博彩市场和金融市场期货合约的数据将被添加到一个大型的真实的经济信息数据集中。然后,研究将结合这些方法和数据,研究与未来货币政策行为、金融市场行为和选举结果相关的调查预期中发现的信念和可能的判断错误。包括从期权和期货市场以及从在线文件中提取的快速变化的变量,将能够对信念和客观预测的修订进行高频跟踪。该框架将允许信念的高频修订与特定的新闻和公告联系起来,以提高预测准确性。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sydney Ludvigson其他文献

Sydney Ludvigson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sydney Ludvigson', 18)}}的其他基金

The Macroeconomics and Financial Market Affectsof Housing Wealth and Housing Finance
宏观经济和金融市场对住房财富和住房金融的影响
  • 批准号:
    1022915
  • 财政年份:
    2010
  • 资助金额:
    $ 21.08万
  • 项目类别:
    Continuing Grant
Collaborative Research: Relating Asset Pricing Theories to Asset Pricing Facts
合作研究:将资产定价理论与资产定价事实联系起来
  • 批准号:
    0617858
  • 财政年份:
    2006
  • 资助金额:
    $ 21.08万
  • 项目类别:
    Continuing Grant
Empirical and Theoretical Linkages Between the Real and Financial Economy
实体经济和金融经济之间的实证和理论联系
  • 批准号:
    0224944
  • 财政年份:
    2002
  • 资助金额:
    $ 21.08万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: HNDS-I: NewsScribe - Extending and Enhancing the Media Cloud Searchable Global Online News Archive
合作研究:HNDS-I:NewsScribe - 扩展和增强媒体云可搜索全球在线新闻档案
  • 批准号:
    2341858
  • 财政年份:
    2024
  • 资助金额:
    $ 21.08万
  • 项目类别:
    Standard Grant
Collaborative Research: HNDS-I: NewsScribe - Extending and Enhancing the Media Cloud Searchable Global Online News Archive
合作研究:HNDS-I:NewsScribe - 扩展和增强媒体云可搜索全球在线新闻档案
  • 批准号:
    2341859
  • 财政年份:
    2024
  • 资助金额:
    $ 21.08万
  • 项目类别:
    Standard Grant
Collaborative Research: HNDS-I. Mobility Data for Communities (MD4C): Uncovering Segregation, Climate Resilience, and Economic Development from Cell-Phone Records
合作研究:HNDS-I。
  • 批准号:
    2420945
  • 财政年份:
    2024
  • 资助金额:
    $ 21.08万
  • 项目类别:
    Standard Grant
Collaborative Research: HNDS-I: Cyberinfrastructure for Human Dynamics and Resilience Research
合作研究:HNDS-I:人类动力学和复原力研究的网络基础设施
  • 批准号:
    2318203
  • 财政年份:
    2023
  • 资助金额:
    $ 21.08万
  • 项目类别:
    Standard Grant
Collaborative Research: HNDS-R: Human Networks, Sustainable Development, and Lived Experience in a Nonindustrial Society
合作研究:HNDS-R:人类网络、可持续发展和非工业社会的生活经验
  • 批准号:
    2212898
  • 财政年份:
    2023
  • 资助金额:
    $ 21.08万
  • 项目类别:
    Standard Grant
Collaborative Research: HNDS-R Networks and Health Disparities in Delays in Diagnosis of Medical Conditions with Ambiguous Symptoms
合作研究:HNDS-R 网络和症状不明确的医疗状况诊断延迟造成的健康差异
  • 批准号:
    2241537
  • 财政年份:
    2023
  • 资助金额:
    $ 21.08万
  • 项目类别:
    Standard Grant
Collaborative Research: SOS-DCI / HNDS-R: Advancing Semantic Network Analysis to Better Understand How Evaluative Exchanges Shape Scientific Arguments
合作研究:SOS-DCI / HNDS-R:推进语义网络分析,以更好地理解评估性交流如何塑造科学论证
  • 批准号:
    2244805
  • 财政年份:
    2023
  • 资助金额:
    $ 21.08万
  • 项目类别:
    Standard Grant
Collaborative Research: HNDS-R: Polarization, Information Integrity, and Diffusion
合作研究:HNDS-R:极化、信息完整性和扩散
  • 批准号:
    2242072
  • 财政年份:
    2023
  • 资助金额:
    $ 21.08万
  • 项目类别:
    Standard Grant
HNDS-R - Collaborative Research: An Integrated Analysis of the COVID-19 Crisis on Labor Market Outcomes and Mortality
HNDS-R - 协作研究:COVID-19 危机对劳动力市场结果和死亡率的综合分析
  • 批准号:
    2242472
  • 财政年份:
    2023
  • 资助金额:
    $ 21.08万
  • 项目类别:
    Standard Grant
HNDS-R - Collaborative Research: An Integrated Analysis of the COVID-19 Crisis on Labor Market Outcomes and Mortality
HNDS-R - 协作研究:COVID-19 危机对劳动力市场结果和死亡率的综合分析
  • 批准号:
    2242581
  • 财政年份:
    2023
  • 资助金额:
    $ 21.08万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了