A Large-Scale Analysis of Mergers and Merger Simulations

大规模合并分析和合并模拟

基本信息

  • 批准号:
    2116934
  • 负责人:
  • 金额:
    $ 36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-15 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

AbstractAntitrust agencies in the United States reviewed over two thousand prospective mergers and acquisitions per year in recent years. Their task is to trade off harms from market power with potential synergies that may be passed on to consumers—and to convince a court to either block mergers that they predict will cause significant consumer harm or to order that the merging parties adopt remedies. These projects will study two aspects of antitrust enforcement in the US. First, the project will document the realized price and quantity effects of mergers that have been approved, studying a near-universe of sufficiently large deals in a number of industries. This quantification will help inform the effects of current policy and may point to avenues for future adjustments. Second, the project will study the efficacy of one of the standard tools for predicted price effects of prospective mergers: the merger simulation. There will be systematic assessment of the predictive power of mergers simulations and characterize the reasons why predictions differ from realized observations. The results of the project will have important implications for antitrust policy, and will provide tools for conducting merger evaluations in the US for a variety of industries.The project will first estimate the price and quantity effect of mergers—on both merging parties and non-merging parties—using data before and after the completion date of the merger and a variety of controls. The project will correlate these effects, both across mergers and within-mergers across markets, with measures of concentration, such as the Herfindahl-Hirschman Index (HHI) and the naïve change of the HHI. There will be a documentation of the time path of the change in prices. Second, the project will estimate a structural model of demand for each of the mergers in the dataset using only data before the merger was consummated, choosing among a variety of demand specifications. The project will then predict post-merger prices using these estimates, the implied costs, and the assumption of static Bayesian-Nash equilibrium. Finally, there will be a decomposition of the prediction error into that due to demand-side changes and supply-side changes (such as synergies and conduct) by estimating parameters of the structural model using post-merger data. This decomposition may provide guidance for how to adjust merger simulations in practice.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
摘要近年来,美国反垄断机构每年审查的潜在并购案超过2000起。他们的任务是权衡市场支配力的危害和可能传递给消费者的潜在协同效应,并说服法院要么阻止他们预测会造成重大消费者损害的合并,要么命令合并方采取补救措施。这些项目将研究美国反垄断执法的两个方面。首先,该项目将记录已获批准的合并的实际价格和数量效应,研究若干行业中几乎所有的足够大的交易。这种量化将有助于了解当前政策的影响,并可能为未来的调整指明方向。第二,本项目将研究预测预期合并的价格影响的标准工具之一:合并模拟的效力。将对合并模拟的预测能力进行系统评估,并说明预测与实际观察不同的原因。该项目的研究结果将对反垄断政策产生重要影响,并将为在美国对各种行业进行合并评估提供工具。该项目将首先使用合并完成日期前后的数据和各种控制来估计合并对合并方和非合并方的价格和数量影响。该项目将把这些影响,包括跨市场的兼并和兼并内的影响,与集中度的衡量标准,如赫芬达尔-赫希曼指数(HHI)和HHI的幼稚变化联系起来。将有一个文件的时间路径的价格变化。其次,该项目将估计数据集中每个合并的需求结构模型,仅使用合并完成之前的数据,在各种需求规格中进行选择。然后,该项目将使用这些估计、隐含成本和静态贝叶斯纳什均衡假设来预测合并后的价格。最后,通过使用合并后的数据估计结构模型的参数,将预测误差分解为需求方变化和供给方变化(协同效应和行为)引起的误差。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vivek Bhattacharya其他文献

Rational Inattention in the Infield
内场理性的注意力不集中
The Design of Defined Contribution Plans
设定提存计划的设计
Selective entry and auction design
选择性入场和拍卖设计
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrew Sweeting;Vivek Bhattacharya
  • 通讯作者:
    Vivek Bhattacharya
Imperfect Public Monitoring with a Fear of Signal Distortion
公共监控不完善,担心信号失真
An Empirical Model of R&D Procurement Contests: An Analysis of the DOD SBIR Program
  • DOI:
    10.3982/ecta16581
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Vivek Bhattacharya
  • 通讯作者:
    Vivek Bhattacharya

Vivek Bhattacharya的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于热量传递的传统固态发酵过程缩小(Scale-down)机理及调控
  • 批准号:
    22108101
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于Multi-Scale模型的轴流血泵瞬变流及空化机理研究
  • 批准号:
    31600794
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
针对Scale-Free网络的紧凑路由研究
  • 批准号:
    60673168
  • 批准年份:
    2006
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目

相似海外基金

Uncovering Sex-Specific Biological Mechanisms of Depression: Insights from Large-Scale Data Analysis
揭示抑郁症的性别特异性生物学机制:大规模数据分析的见解
  • 批准号:
    MR/Y011112/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Fellowship
Collaborative Research: NeTS: Medium: Large Scale Analysis of Configurations and Management Practices in the Domain Name System
合作研究:NetS:中型:域名系统配置和管理实践的大规模分析
  • 批准号:
    2312711
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Identification of coexistence relationships and phenotypic traits of virulence and resistance genes by large-scale E. coli genome analysis
通过大规模大肠杆菌基因组分析鉴定毒力和抗性基因的共存关系和表型特征
  • 批准号:
    23K07947
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elucidation of a novel subgroup of anaplastic thyroid carcinoma by large-scale cohort and comprehensive genetic analysis
通过大规模队列和综合遗传分析阐明未分化甲状腺癌的新亚组
  • 批准号:
    23K14493
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Large-scale data analysis for improving the process of personalized remote lifestyle intervention
大规模数据分析,改善个性化远程生活方式干预流程
  • 批准号:
    23K16769
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Deep Learning for Large-Scale Analysis of Tumour-Infiltrating Lymphocytes on Whole-Slide Images.
用于大规模分析全玻片图像上肿瘤浸润淋巴细胞的深度学习。
  • 批准号:
    2882929
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Studentship
Collaborative Research: NeTS: Medium: Large Scale Analysis of Configurations and Management Practices in the Domain Name System
合作研究:NetS:中型:域名系统配置和管理实践的大规模分析
  • 批准号:
    2312710
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Unilateral speciation-genomic analysis of large scale natural interspecific hybridization and unidirectional introgression
大规模自然种间杂交和单向渗入的单边物种形成基因组分析
  • 批准号:
    23H02242
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Functional elucidation and therapeutic application of coexisting genetic abnormalities obtained from large-scale cancer genome analysis
从大规模癌症基因组分析中获得的共存遗传异常的功能阐明和治疗应用
  • 批准号:
    22KJ3158
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Collaborative Research: NeTS: Medium: Large Scale Analysis of Configurations and Management Practices in the Domain Name System
合作研究:NetS:中型:域名系统配置和管理实践的大规模分析
  • 批准号:
    2312709
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了