Advancing Methods for Spatial Analysis in Local Modeling

改进局部建模中的空间分析方法

基本信息

  • 批准号:
    2117455
  • 负责人:
  • 金额:
    $ 39.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

This project develops statistical methods for spatial data. It is common for data to exhibit variation across spatial contexts, including outcomes such as crime rates, voting preferences in elections, and disease prevalence. Conventionally, researchers have used statistical models that implicitly assume that the processes generating these outcomes are uniform across locations. Yet, the processes that lead to this variation may vary in different spatial contexts, and statistical approaches are needed that account for this variation. In this study, the researchers develop statistical methods that address correlations between spatially proximate outcomes. As a complement to the methods that they develop, the researchers are developing open source software to make these approaches freely available to other scholars. In addition to the methodological advances, the award supports the involvement of two graduate students, who benefit from the training in scientific research. The award supports a researcher with a disability, which contributes to goals of broadening participation in science.In this study, the researchers examine and develop methods for the statistical modeling of data at multiple scales. Specifically, the researchers advance multiscale geographically weighted regression (MGWR) methods, which allows the effects of predictor variables to vary based on their spatial context. These approaches address known challenges to statistical inferences, specifically that regression models may indicate biased and contrary effects if the models do not adequately account for the scale and structure in the dataset. In this project, the researchers examine the extent to which these problems can be addressed with the use of MGWR methods. Additional aims include new methods for adjusting inferences when multiple hypotheses are examined and the implementation of diagnostic tools for examining the robustness of model assumptions. To advance the methods, the researchers apply the modeling approach to empirical datasets with spatial structure, such as mortality during the COVID-19 pandemic, teen pregnancy rates, and voting trends in recent elections.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目开发空间数据的统计方法。数据在不同的空间环境中表现出差异是很常见的,包括犯罪率、选举中的投票偏好和疾病流行率等结果。传统上,研究人员使用的统计模型隐含地假设产生这些结果的过程在不同地点是一致的。然而,导致这种变化的过程可能在不同的空间背景下有所不同,需要统计方法来解释这种变化。在这项研究中,研究人员开发了统计方法来解决空间接近结果之间的相关性。作为他们开发的方法的补充,研究人员正在开发开源软件,使这些方法免费提供给其他学者。除了方法上的进步,该奖项还支持两名研究生的参与,他们从科学研究的培训中受益。该奖项支持残疾研究人员,这有助于扩大参与科学的目标。在这项研究中,研究人员检查和开发方法,在多个尺度的数据统计建模。具体来说,研究人员提出了多尺度地理加权回归(MGWR)方法,该方法允许预测变量的影响根据其空间背景而变化。这些方法解决了统计推断的已知挑战,特别是如果模型不能充分考虑数据集中的规模和结构,回归模型可能会显示有偏见和相反的影响。在这个项目中,研究人员研究了使用MGWR方法可以解决这些问题的程度。其他目标包括新的方法来调整推论时,多个假设进行检查和实施诊断工具,检查模型假设的鲁棒性。为了推进这些方法,研究人员将建模方法应用于具有空间结构的经验数据集,例如COVID-19大流行期间的死亡率,青少年怀孕率和最近选举中的投票趋势。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The spatial and temporal dynamics of voter preference determinants in four U.S. presidential elections (2008–2020)
  • DOI:
    10.1111/tgis.12880
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Ziqi Li;A. Fotheringham
  • 通讯作者:
    Ziqi Li;A. Fotheringham
Scale and local modeling: new perspectives on the modifiable areal unit problem and Simpson’s paradox
尺度和局部建模:可修改面积单位问题和辛普森悖论的新视角
  • DOI:
    10.1007/s10109-021-00371-5
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Fotheringham, A. Stewart;Sachdeva, M.
  • 通讯作者:
    Sachdeva, M.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Fotheringham其他文献

Alexander Fotheringham的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Fotheringham', 18)}}的其他基金

The Measurement of Scale and Process Heterogeneity Through Local Multivariate Models
通过局部多元模型测量规模和过程异质性
  • 批准号:
    1758786
  • 财政年份:
    2018
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

MPhil/PhD Statistics (Assessing inequality in the Criminal Justice System using novel causal inference methods and Bayesian spatial models)
硕士/博士统计学(使用新颖的因果推理方法和贝叶斯空间模型评估刑事司法系统中的不平等)
  • 批准号:
    2905812
  • 财政年份:
    2023
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Studentship
Bayesian Learning for Spatial Point Processes: Theory, Methods, Computation, and Applications
空间点过程的贝叶斯学习:理论、方法、计算和应用
  • 批准号:
    2412923
  • 财政年份:
    2023
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Elucidation of spatial and ecological characteristics of human pathogenic bacteria living symbiotically in the bovine gastrointestinal tract and construction of new control methods for them
阐明牛胃肠道共生的人类致病菌的空间和生态特征并构建新的控制方法
  • 批准号:
    23H02366
  • 财政年份:
    2023
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Methods for inferring and analyzing gene regulatory networks using single-cell multiomics and spatial genomics data
使用单细胞多组学和空间基因组学数据推断和分析基因调控网络的方法
  • 批准号:
    10712174
  • 财政年份:
    2023
  • 资助金额:
    $ 39.99万
  • 项目类别:
SCH: Graph-based Spatial Transcriptomics Computational Methods in Kidney Diseases
SCH:肾脏疾病中基于图的空间转录组学计算方法
  • 批准号:
    10816929
  • 财政年份:
    2023
  • 资助金额:
    $ 39.99万
  • 项目类别:
Machine learning methods for interpreting spatial multi-omics data
用于解释空间多组学数据的机器学习方法
  • 批准号:
    10585386
  • 财政年份:
    2023
  • 资助金额:
    $ 39.99万
  • 项目类别:
Development of High-Precision Geospatial Information Utilization Methods in Urban and Regional Economic Analysis and Their Application to Spatial Causal Inference
城市和区域经济分析中高精度地理空间信息利用方法的发展及其在空间因果推理中的应用
  • 批准号:
    23K17559
  • 财政年份:
    2023
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Novel Machine Learning Methods for Estimating the Spatial Distribution of Species
用于估计物种空间分布的新机器学习方法
  • 批准号:
    2878918
  • 财政年份:
    2023
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Studentship
Machine learning methods for the analysis and modeling of spatial proteomics data
用于空间蛋白质组数据分析和建模的机器学习方法
  • 批准号:
    10576681
  • 财政年份:
    2023
  • 资助金额:
    $ 39.99万
  • 项目类别:
Theory, Methods, and Resources for Understanding and Leveraging Spatial Variation in Population Genetic Data
理解和利用群体遗传数据空间变异的理论、方法和资源
  • 批准号:
    10623985
  • 财政年份:
    2023
  • 资助金额:
    $ 39.99万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了