Machine learning methods for the analysis and modeling of spatial proteomics data

用于空间蛋白质组数据分析和建模的机器学习方法

基本信息

  • 批准号:
    10576681
  • 负责人:
  • 金额:
    $ 4.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-09 至 2026-01-08
  • 项目状态:
    未结题

项目摘要

Project Summary A comprehensive 3D molecular map of the human body would provide valuable information that is critical for studying human-related processes and biological systems such as development, aging, and disease. Towards this goal of constructing such a map, multidisciplinary consortia such as the Human Cell Atlas (HCA) and the Human BioMolecular Atlas Program (HuBMAP) have developed technologies for profiling the transcriptome and proteome in single cells. Out of these technologies, methods for single-cell spatial proteomics have only very recently been developed; for example, recent advances in multiplexed imaging have enabled the profiling of tens to hundreds of proteins per cell. While the generation of single-cell spatial proteomics data promise to revolutionize our ability to study cell-cell interactions, it also raises several computational and modeling challenges. Cell segmentation remains a long-standing problem that usually requires tailored solutions for each bioimaging experiment. Even after cells are segmented, using expression values to infer cell type and organization is challenging. There are currently no standardized methods developed that jointly incorporate spatial and molecular information to analyze the complex biological interactions from rich spatial proteomics datasets. This project proposes to develop computational methods to provide a comprehensive solution for the use of spatial proteomics data for building 3D molecular maps of the human body. We hypothesize that jointly profiling spatial and molecular relationships from spatial proteomics datasets captures biological patterns that would otherwise be missed. In Aim 1, a method will be developed for RAnking Markers for CEll Segmentation (RAMCES) in order to choose the optimal protein markers to use for cell segmentation. In Aim 2, a unified learning framework that incorporates both protein expression and cell neighborhood information will be constructed in order to assign cells to phenotypes and reveal spatial patterns. In Aim 3, methods will be developed to infer cell-cell and protein-protein interactions in spatial proteomics data. The methods developed in this project will be integrated into the HuBMAP processing pipeline to analyze spatial proteomics datasets. We will also apply and validate these methods using data from pancreatic lymph nodes that profile individuals with and without Type 1 diabetes to analyze changes associated with the disease at an unprecedented scale. Together, completing the proposed aims will enable the HuBMAP project to uncover new biological interactions in cells and tissues and expand our understanding of molecular interactions at a single-cell level. This proposal outlines a training plan that comprises of mentored research training, coursework, and professional development. The knowledge and skillset developed during the training period will be necessary for the applicant's long-term goal of becoming a successful independent scientist working at the interface of machine learning, computer science, and biology.
项目摘要 一个全面的人体3D分子图将提供有价值的信息, 对研究人类相关过程和生物系统至关重要,如发育,衰老, 疾病为了实现构建这种地图的目标,多学科财团,如人类细胞 Atlas(HCA)和人类生物分子图谱计划(HuBMAP)已经开发出了分析技术 单细胞中的转录组和蛋白质组。在这些技术中,用于单细胞空间的方法 蛋白质组学只是最近才发展起来的;例如,多路成像的最新进展 能够对每个细胞的几十到几百个蛋白质进行分析。虽然单细胞空间的生成 蛋白质组学数据有望彻底改变我们研究细胞-细胞相互作用的能力,它也提出了几个 计算和建模挑战。细胞分割仍然是一个长期存在的问题,通常 需要为每个生物成像实验定制解决方案。即使在细胞被分割后,使用表达 值来推断细胞类型和组织具有挑战性。目前还没有标准化的方法 开发了一种结合空间和分子信息来分析复杂生物学的方法, 从丰富的空间蛋白质组学数据集的相互作用。 该项目提出开发计算方法,为 使用空间蛋白质组学数据构建人体的3D分子图谱。我们假设 从空间蛋白质组学数据集分析空间和分子关系捕获生物模式, 否则会被错过。在目标1中,将开发一种用于细胞11分割的随机标记的方法 (RAMCES),以便选择用于细胞分割的最佳蛋白质标记物。在目标2中, 结合蛋白质表达和细胞邻域信息的学习框架将是 构建的目的是将细胞分配给表型并揭示空间模式。在目标3中,方法将是 开发用于推断空间蛋白质组学数据中的细胞-细胞和蛋白质-蛋白质相互作用。开发的方法 在这个项目中,将被集成到HuBMAP处理管道中,以分析空间蛋白质组学数据集。 我们还将应用和验证这些方法使用的数据从胰腺淋巴结的个人档案 有和没有1型糖尿病,以前所未有的规模分析与疾病相关的变化。 总之,完成拟议的目标将使HuBMAP项目能够发现新的生物相互作用 在细胞和组织中,并扩大我们对单细胞水平上分子相互作用的理解。 该提案概述了一个培训计划,包括指导研究培训,课程, 专业发展。在培训期间开发的知识和技能将是必要的 申请人的长期目标是成为一名成功的独立科学家, 机器学习、计算机科学和生物学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Monica Dayao其他文献

Monica Dayao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
  • 批准号:
    24K18114
  • 财政年份:
    2024
  • 资助金额:
    $ 4.77万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
  • 批准号:
    10089306
  • 财政年份:
    2024
  • 资助金额:
    $ 4.77万
  • 项目类别:
    Collaborative R&D
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
  • 批准号:
    498288
  • 财政年份:
    2024
  • 资助金额:
    $ 4.77万
  • 项目类别:
    Operating Grants
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
  • 批准号:
    498310
  • 财政年份:
    2024
  • 资助金额:
    $ 4.77万
  • 项目类别:
    Operating Grants
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
  • 批准号:
    23K20339
  • 财政年份:
    2024
  • 资助金额:
    $ 4.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
  • 批准号:
    2740736
  • 财政年份:
    2024
  • 资助金额:
    $ 4.77万
  • 项目类别:
    Studentship
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
  • 批准号:
    2305890
  • 财政年份:
    2024
  • 资助金额:
    $ 4.77万
  • 项目类别:
    Fellowship Award
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
  • 批准号:
    2406592
  • 财政年份:
    2024
  • 资助金额:
    $ 4.77万
  • 项目类别:
    Standard Grant
McGill-MOBILHUB: Mobilization Hub for Knowledge, Education, and Artificial Intelligence/Deep Learning on Brain Health and Cognitive Impairment in Aging.
McGill-MOBILHUB:脑健康和衰老认知障碍的知识、教育和人工智能/深度学习动员中心。
  • 批准号:
    498278
  • 财政年份:
    2024
  • 资助金额:
    $ 4.77万
  • 项目类别:
    Operating Grants
Welfare Enhancing Fiscal and Monetary Policies for Aging Societies
促进老龄化社会福利的财政和货币政策
  • 批准号:
    24K04938
  • 财政年份:
    2024
  • 资助金额:
    $ 4.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了