CyberTraining: Implementation: Medium: Machine Learning Training and Curriculum Development for Earth Science Studies
网络培训:实施:媒介:地球科学研究的机器学习培训和课程开发
基本信息
- 批准号:2117834
- 负责人:
- 金额:$ 99.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Earth system science discoveries are increasingly affected by data management, analysis, and inference using powerful machine learning (ML) techniques. Yet, the skills required to perform these tasks, and training in cutting-edge, open-source technologies to build ML models and pipelines, big data, and cloud computing, are not covered by the traditional graduate curriculum in the geosciences. To fill these gaps, this project will develop the GeoScience MAchine Learning Resources and Training (GeoSMART) framework that will build a foundation in open-source scientific ecosystems and general ML theory, toolkits, and deployment on Cloud computing platforms. This project will include a team of geoscience and ML educators to create a novel ML curriculum with focus on seismology, cryosphere and hydrology applications. The training materials will be included in an enhanced curriculum that will broaden impact on emerging ML communities. The project’s implementation plan will provide training in open-source ML toolkits and data science skills. Further, the project will cultivate the development of discipline-specific ML libraries, workflows, and communities of practice to sustain future growth of ML cybertraining opportunities. By building tools using open-source and cloud-accessible platforms, and by partnering with colleges and institutions that lack computing resources for ML workflows, the project will increase access to cybertraining materials and help to solve geoscience challenges.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
地球系统科学发现越来越多地受到使用强大的机器学习(ML)技术进行数据管理、分析和推理的影响。然而,执行这些任务所需的技能,以及构建ML模型和管道,大数据和云计算的尖端开源技术培训,并不包括在地球科学的传统研究生课程中。为了填补这些空白,该项目将开发地球科学机器学习资源和培训(GeoSMART)框架,该框架将在开源科学生态系统和一般ML理论,工具包以及云计算平台上的部署中奠定基础。 该项目将包括一个地球科学和ML教育工作者团队,以创建一个新的ML课程,重点是地震学,冰冻圈和水文应用。这些培训材料将被纳入增强型课程,以扩大对新兴ML社区的影响。该项目的实施计划将提供开源ML工具包和数据科学技能的培训。此外,该项目将培养特定学科的ML库,工作流程和实践社区的发展,以维持ML网络培训机会的未来增长。通过使用开源和云访问平台构建工具,并与缺乏ML工作流程计算资源的学院和机构合作,该项目将增加网络培训材料的访问权限,并帮助解决地球科学挑战。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
GStatSim V1.0: a Python package for geostatistical interpolation and conditional simulation
GStatSim V1.0:用于地统计插值和条件模拟的 Python 包
- DOI:10.5194/gmd-16-3765-2023
- 发表时间:2023
- 期刊:
- 影响因子:5.1
- 作者:MacKie, Emma J.;Field, Michael;Wang, Lijing;Yin, Zhen;Schoedl, Nathan;Hibbs, Matthew;Zhang, Allan
- 通讯作者:Zhang, Allan
High-Resolution Snow-Covered Area Mapping in Forested Mountain Ecosystems Using PlanetScope Imagery
- DOI:10.3390/rs14143409
- 发表时间:2022-07
- 期刊:
- 影响因子:0
- 作者:Aji John;A. Cannistra;Kehan Yang;Amanda Tan;D. Shean;J. R. Lambers;N. Cristea
- 通讯作者:Aji John;A. Cannistra;Kehan Yang;Amanda Tan;D. Shean;J. R. Lambers;N. Cristea
High-resolution mapping of snow cover in montane meadows and forests using Planet imagery and machine learning
- DOI:10.3389/frwa.2023.1128758
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Kehan Yang;Aji John;D. Shean;J. Lundquist;Ziheng Sun;Fangfang Yao;Stefan Todoran;N. Cristea
- 通讯作者:Kehan Yang;Aji John;D. Shean;J. Lundquist;Ziheng Sun;Fangfang Yao;Stefan Todoran;N. Cristea
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicoleta Cristea其他文献
A review of Earth Artificial Intelligence
对地球人工智能的回顾
- DOI:
10.1016/j.cageo.2022.105034 - 发表时间:
2022-02-01 - 期刊:
- 影响因子:4.400
- 作者:
Ziheng Sun;Laura Sandoval;Robert Crystal-Ornelas;S. Mostafa Mousavi;Jinbo Wang;Cindy Lin;Nicoleta Cristea;Daniel Tong;Wendy Hawley Carande;Xiaogang Ma;Yuhan Rao;James A. Bednar;Amanda Tan;Jianwu Wang;Sanjay Purushotham;Thomas E. Gill;Julien Chastang;Daniel Howard;Benjamin Holt;Chandana Gangodagamage;Aji John - 通讯作者:
Aji John
Open-source models for development of data and metadata standards
- DOI:
10.1016/j.patter.2025.101316 - 发表时间:
2025-07-11 - 期刊:
- 影响因子:7.400
- 作者:
Ariel Rokem;Vani Mandava;Nicoleta Cristea;Anshul Tambay;Kristofer Bouchard;Carolina Berys-Gonzalez;Andy Connolly - 通讯作者:
Andy Connolly
Nicoleta Cristea的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicoleta Cristea', 18)}}的其他基金
COLLABORATIVE RESEARCH: GI CATALYTIC TRACK: Cyberinfrastructure for Intelligent High-Resolution Snow Cover Inference from Cubesat Imagery
合作研究:GI CATALYTIC Track:根据立方体卫星图像进行智能高分辨率积雪推断的网络基础设施
- 批准号:
1947875 - 财政年份:2020
- 资助金额:
$ 99.58万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
- 批准号:
2321102 - 财政年份:2024
- 资助金额:
$ 99.58万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Transforming the Molecular Science Research Workforce through Integration of Programming in University Curricula
协作研究:网络培训:实施:中:通过将编程融入大学课程来改变分子科学研究人员队伍
- 批准号:
2321045 - 财政年份:2024
- 资助金额:
$ 99.58万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
- 批准号:
2321103 - 财政年份:2024
- 资助金额:
$ 99.58万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Transforming the Molecular Science Research Workforce through Integration of Programming in University Curricula
协作研究:网络培训:实施:中:通过将编程融入大学课程来改变分子科学研究人员队伍
- 批准号:
2321044 - 财政年份:2024
- 资助金额:
$ 99.58万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
- 批准号:
2321104 - 财政年份:2024
- 资助金额:
$ 99.58万 - 项目类别:
Standard Grant
CyberTraining: Implementation: Medium: Computational Materials Science Summer School - Fostering Accelerated Scientific Techniques (CMS3-FAST)
网络培训:实施:媒介:计算材料科学暑期学校 - 促进加速科学技术 (CMS3-FAST)
- 批准号:
2321005 - 财政年份:2023
- 资助金额:
$ 99.58万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: CyberTraining of Construction (CyCon) Research Workforce Through an Educational and Community Engagement Platform
协作研究:网络培训:实施:媒介:通过教育和社区参与平台对建筑 (CyCon) 研究人员进行网络培训
- 批准号:
2229604 - 财政年份:2023
- 资助金额:
$ 99.58万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Cyber2A: CyberTraining on AI-driven Analytics for Next Generation Arctic Scientists
合作研究:网络培训:实施:媒介:Cyber2A:下一代北极科学家人工智能驱动分析的网络培训
- 批准号:
2230034 - 财政年份:2023
- 资助金额:
$ 99.58万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Cross-Disciplinary Training for Joint Cyber-Physical Systems and IoT Security
协作研究:网络培训:实施:中:联合网络物理系统和物联网安全的跨学科培训
- 批准号:
2230086 - 财政年份:2023
- 资助金额:
$ 99.58万 - 项目类别:
Continuing Grant
Collaborative Research: CyberTraining: Implementation: Medium: T3-CIDERS: A Train-the-Trainer Approach to Fostering CI- and Data-Enabled Research in Cybersecurity
协作研究:网络培训:实施:中:T3-CIDERS:一种培训师培训方法,促进网络安全中的 CI 和数据支持研究
- 批准号:
2320998 - 财政年份:2023
- 资助金额:
$ 99.58万 - 项目类别:
Standard Grant














{{item.name}}会员




