MRI: Acquisition of a GPU Cluster for Multi-Disciplinary Research and Education at University of Nevada, Las Vegas
MRI:内华达大学拉斯维加斯分校收购 GPU 集群用于多学科研究和教育
基本信息
- 批准号:2117941
- 负责人:
- 金额:$ 43.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project funds the purchase and commissioning of a high-performance graphical processing unit (GPU) cluster at the University of Nevada, Las Vegas (UNLV). The project will address emergent and longer-term needs, challenges, and opportunities in research and educational efforts across multiple disciplines: biomedical research, intelligent transportation systems and automated vehicles, genomics, astronomy, and physics. The project will help advance national initiatives in big data, strategic computing, artificial intelligence, and smart infrastructure systems. These will integrate, synthesize, model, and visualize large volumes of data from various sources as well as develop and apply Artificial Intelligence (AI) techniques to assist decision making. For applied and basic research aspects of the project, the GPU cluster will leverage advances in computing hardware, software, sensor networks, and communications systems. Some elements of the project will address near-term societal needs to preserve and enhance the quality of living of individuals and families, support economic competitiveness and growth of businesses, and foster the vitality of communities. These include topics related to public health, transportation, environment, and energy. The project’s longer-term initiatives will address explorations and innovations in basic research in these domains as well as in astronomy, physics, and genomics. These activities will include partnerships with academia, government entities, and private sector organizations. The project will support curricular and co-curricular activities for undergraduate and graduate students to increase their interests in related education, research, and career opportunities. As a Minority-Serving Institution and Hispanic Serving Institution, this grant will help UNLV to significantly expand such opportunities for students from varied socio-economic and socio-demographic communities. Thus, an outcome of the project will be to help develop skilled work-forces from diverse backgrounds. The GPU cluster will support basic and applied research, as well as educational programs across multiple disciplines. Common elements for the research efforts include integrating, synthesizing, modeling, and visualizing large volumes of data along with the development and application of various AI techniques to support decision making. Efforts in Biomedicine will be to stratify individuals at risk for benzodiazepine and opioid overdose using interpretable deep learning techniques using publicly available pluripotency transcription factors datasets. Activities related to intelligent transportation systems and automated vehicles will address comprehensive trajectory prediction challenges for near real-time applications on transportation networks to help accelerate the deployment of Connected Automated Vehicles and Infrastructure Systems; they will use data from various in-vehicle, on-roadway, and roadside sensors. Research in Genomics will be to better understand the evolution of novel transcription factor (TF) binding sites originating from endogenous retrovirus (ERV) integration. Astronomy related endeavors will be to estimate planet mass from protoplanetary disk images using Convolutional Neural Networks (CNN). Efforts in Physics will be to develop rotationally equivariant CNN to simulate and evaluate force fields at atomistic scales of materials. Educational aspects of the project will include curricular and co-curricular initiatives at the undergraduate and graduate levels to help alert, engage, excite, and motivate students to pursue education, research, and career opportunities in related fields. The project will include partnerships with public and private sector organizations and academia.This project is jointly funded by the Major Research Instrumentation (MRI) program, the Established Program to Stimulate Competitive Research (EPSCoR), and the Computer & Information Science & Engineering (CISE) Directorate.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目为拉斯维加斯的内华达州大学(UNLV)购买和调试高性能图形处理单元(GPU)集群提供资金。该项目将解决跨多个学科的研究和教育工作中的紧急和长期需求,挑战和机遇:生物医学研究,智能交通系统和自动驾驶汽车,基因组学,天文学和物理学。该项目将有助于推进大数据、战略计算、人工智能和智能基础设施系统方面的国家举措。这些将整合,合成,建模和可视化来自各种来源的大量数据,以及开发和应用人工智能(AI)技术来辅助决策。对于该项目的应用和基础研究方面,GPU集群将利用计算硬件,软件,传感器网络和通信系统的进步。该项目的一些内容将满足近期社会需求,以保持和提高个人和家庭的生活质量,支持经济竞争力和企业增长,并促进社区活力。其中包括与公共卫生、交通、环境和能源有关的主题。该项目的长期举措将涉及这些领域以及天文学,物理学和基因组学基础研究的探索和创新。这些活动将包括与学术界、政府实体和私营部门组织建立伙伴关系。该项目将支持本科生和研究生的课程和课外活动,以提高他们对相关教育,研究和职业机会的兴趣。作为一个少数民族服务机构和西班牙裔服务机构,这笔赠款将帮助UNLV显着扩大来自不同的社会经济和社会人口社区的学生这样的机会。因此,该项目的一个成果将是帮助发展来自不同背景的熟练劳动力。GPU集群将支持基础和应用研究,以及跨多个学科的教育项目。研究工作的共同要素包括集成,合成,建模和可视化大量数据沿着各种人工智能技术的开发和应用,以支持决策。生物医学的努力将是使用可解释的深度学习技术,使用公开可用的多能性转录因子数据集,对苯二氮卓类药物和阿片类药物过量风险的个体进行分层。与智能交通系统和自动化车辆相关的活动将解决交通网络上近实时应用的综合轨迹预测挑战,以帮助加速互联自动化车辆和基础设施系统的部署;它们将使用来自各种车载,道路和路边传感器的数据。基因组学的研究将更好地理解起源于内源性逆转录病毒(ERV)整合的新型转录因子(TF)结合位点的进化。天文学相关的努力将是使用卷积神经网络(CNN)从原行星盘图像中估计行星质量。物理学的努力将是开发旋转等变CNN来模拟和评估原子尺度材料的力场。该项目的教育方面将包括本科和研究生阶段的课程和课外活动,以帮助提醒,参与,激发和激励学生在相关领域追求教育,研究和职业机会。该项目将包括与公共和私营部门组织和学术界的合作伙伴关系。该项目由重大研究仪器(MRI)计划,刺激竞争研究的既定计划(EPSCoR)和计算机&信息科学&工程(CISE)共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响进行评估,被认为值得支持审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mingon Kang其他文献
Network and Cluster Analysis on Bridge Inspection Reports Using Text Mining Algorithms
使用文本挖掘算法对桥梁检测报告进行网络和聚类分析
- DOI:
10.1061/9780784483961.052 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Younghan Jung;Mingon Kang;M. M. Jeong;Junyong Ahn - 通讯作者:
Junyong Ahn
1397 Prediction of ALK Expression on H&E-Stained Pathology Slide Images Using a Deep-Learning Model: the Further Validation
1397 使用深度学习模型对 H&E 染色病理切片图像上 ALK 表达的预测:进一步的验证
- DOI:
10.1016/j.labinv.2024.103635 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:4.200
- 作者:
Jung Wook Yang;Sai Kosaraju;Wookjae Jung;Daehyun Song;Hyo Jung An;Mee Sook Roh;Ahrong Kim;Dong Hoon Shin;Mingon Kang - 通讯作者:
Mingon Kang
Towards understanding cancer dormancy over strategic hitching up mechanisms to technologies
- DOI:
10.1186/s12943-025-02250-9 - 发表时间:
2025-02-14 - 期刊:
- 影响因子:33.900
- 作者:
Sumin Yang;Jieun Seo;Jeonghyeon Choi;Sung-Hyun Kim;Yunmin Kuk;Kyung Chan Park;Mingon Kang;Sangwon Byun;Jae-Yeol Joo - 通讯作者:
Jae-Yeol Joo
Trends of emergency department visits for cannabinoid hyperemesis syndrome in Nevada: An interrupted time series analysis
内华达州大麻素剧吐综合征急诊科就诊趋势:间断时间序列分析
- DOI:
10.1371/journal.pone.0303205 - 发表时间:
2024 - 期刊:
- 影响因子:3.7
- 作者:
Jaeseung Soh;Yonsu Kim;Jay Shen;Mingon Kang;Stefan Chaudhry;Tae Ha Chung;Seo Hyun Kim;Yena Hwang;Daniel Lim;Adam Khattak;Leora Frimer;Ji Won Yoo - 通讯作者:
Ji Won Yoo
Harnessing deep learning into hidden mutations of neurological disorders for therapeutic challenges
- DOI:
10.1007/s12272-023-01450-5 - 发表时间:
2023-06-01 - 期刊:
- 影响因子:7.500
- 作者:
Sumin Yang;Sung-Hyun Kim;Mingon Kang;Jae-Yeol Joo - 通讯作者:
Jae-Yeol Joo
Mingon Kang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Equipment: MRI: Track 1 Acquisition of NVIDIA DGX H100 GPU system for research and education at VCU
设备: MRI:轨道 1 采购 NVIDIA DGX H100 GPU 系统,用于 VCU 的研究和教育
- 批准号:
2316003 - 财政年份:2023
- 资助金额:
$ 43.23万 - 项目类别:
Standard Grant
Equipment: MRI: Track 1 Acquisition of a GPU-Accelerated Computing Cluster for Advanced Optimization and Design in Multidisciplinary Research and Education
设备:MRI:Track 1 获取 GPU 加速计算集群,用于多学科研究和教育中的高级优化和设计
- 批准号:
2320649 - 财政年份:2023
- 资助金额:
$ 43.23万 - 项目类别:
Standard Grant
MRI: Acquisition of a GPU-based High Performance Computing Instrumentation for Smart City Research at Cleveland State University
MRI:克利夫兰州立大学为智能城市研究采购基于 GPU 的高性能计算仪器
- 批准号:
2215388 - 财政年份:2022
- 资助金额:
$ 43.23万 - 项目类别:
Standard Grant
MRI: Acquisition of a GPU-accelerated cluster for research, training and outreach
MRI:获取 GPU 加速集群用于研究、培训和推广
- 批准号:
2215734 - 财政年份:2022
- 资助金额:
$ 43.23万 - 项目类别:
Standard Grant
Research Infrastructure: MRI: Acquisition of a GPU Cluster to Advance the Land Grant Mission at Washington State University Using AI-Driven Research
研究基础设施:MRI:收购 GPU 集群,利用人工智能驱动的研究推进华盛顿州立大学的土地授予任务
- 批准号:
2216108 - 财政年份:2022
- 资助金额:
$ 43.23万 - 项目类别:
Standard Grant
MRI: Acquisition of Cutting-Edge GPU and MPI Nodes for the Interdisciplinary Pitt Center for Research Computing
MRI:为跨学科皮特研究计算中心采购尖端 GPU 和 MPI 节点
- 批准号:
2117681 - 财政年份:2021
- 资助金额:
$ 43.23万 - 项目类别:
Standard Grant
MRI: Acquisition of a GPU/CPU computing cluster for research and education in computational chemistry and materials
MRI:收购 GPU/CPU 计算集群,用于计算化学和材料的研究和教育
- 批准号:
2117956 - 财政年份:2021
- 资助金额:
$ 43.23万 - 项目类别:
Standard Grant
MRI: Acquisition of Dolly Sods GPU Cluster for Accelerated High-Performance Computing and Applications in Machine Learning and Artificial Intelligence in West Virginia
MRI:收购 Dolly Sods GPU 集群,以加速西弗吉尼亚州机器学习和人工智能的高性能计算和应用
- 批准号:
2117575 - 财政年份:2021
- 资助金额:
$ 43.23万 - 项目类别:
Standard Grant
MRI: Acquisition of a High-Performance GPU Cluster for Research and Education
MRI:采购用于研究和教育的高性能 GPU 集群
- 批准号:
2018575 - 财政年份:2020
- 资助金额:
$ 43.23万 - 项目类别:
Standard Grant
MRI: Acquisition of a Heterogeneous Multi-GPU Cluster to Support Exploration at Scale
MRI:获取异构多 GPU 集群以支持大规模探索
- 批准号:
1920020 - 财政年份:2020
- 资助金额:
$ 43.23万 - 项目类别:
Standard Grant