MRI: Acquisition of a GPU-accelerated cluster for research, training and outreach

MRI:获取 GPU 加速集群用于研究、培训和推广

基本信息

  • 批准号:
    2215734
  • 负责人:
  • 金额:
    $ 43.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

This project will enable ground-breaking research at Michigan Technological University (Michigan Tech) by acquiring a high-performance computing cluster to be named DeepBlizzard. DeepBlizzard will accelerate scientific discoveries in basic research and technological innovations by addressing emergent and longer-term needs with broad societal impacts in multiple disciplines: chemistry, forestry, mathematics, physics, engineering (biomedical, mechanical, materials science), and computer science. DeepBlizzard will be utilized by over 125 users across 20 departments and 5 Colleges at Michigan Tech and by partners at North Carolina A&T University. DeepBlizzard will catalyze and accelerate research, enable dissemination of results, and expand opportunities for collaboration, thereby promoting the advancement of these diverse scientific domains. The project will also provide various training, teaching, and outreach activities to produce a highly trained and diverse technical workforce, including the next generation of scientists. Throughout its life, DeepBlizzard will serve as the epicenter of innovative research by enabling and supporting cross-disciplinary and collaborative research opportunities.The DeepBlizzard high-performance computing cluster is designed by a team of experts from Computer Science, Physics, Chemistry, and Biomedical Engineering in coordination with Information Technology (IT) professionals. The instrument architecture is based on graphical processing unit (GPU) based accelerators. DeepBlizzard is configured to meet three major requirements: high-performance deep learning and inference; high-performance single, double, and mixed-precision calculations; and the ability to execute codes using high levels of parallelism. These requirements map to the needs of ongoing and proposed computational research endeavors at Michigan Tech. In addition, several outreach and training activities – developed in partnership with Michigan Tech’s existing NSF Research Experience for Undergraduates (REU) site, NSF/NSA GenCyber Camp, and other programs involving K-12, undergraduate, and graduate student, and historically marginalized groups in STEM – will provide seamless integration of research activities with outreach.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将通过收购名为DeepBlizzard的高性能计算集群,使密歇根理工大学(Michigan Tech)的突破性研究得以实现。DeepBlizzard将通过解决在化学、林业、数学、物理、工程(生物医学、机械、材料科学)和计算机科学等多个学科中产生广泛社会影响的紧急和长期需求,加快基础研究和技术创新的科学发现。DeepBlizzard将被密歇根理工大学20个系和5个学院的超过125名用户以及北卡罗来纳农工大学的合作伙伴使用。DeepBlizzard将催化和加速研究,使成果得以传播,并扩大合作机会,从而促进这些不同科学领域的进步。该项目还将提供各种培训、教学和外联活动,以培养一支训练有素的多样化技术队伍,包括下一代科学家。在DeepBlizzard的整个生命周期中,DeepBlizzard将通过支持和支持跨学科和协作研究机会,成为创新研究的中心。DeepBlizzard高性能计算集群由来自计算机科学、物理、化学和生物医学工程的专家团队与信息技术(IT)专业人员协调设计。仪器架构基于基于图形处理单元(GPU)的加速器。DeepBlizzard被配置为满足三个主要要求:高性能的深度学习和推理;高性能的单精度、双精度和混合精度计算;以及使用高水平并行性执行代码的能力。这些要求与密歇根理工学院正在进行的和拟议的计算研究工作的需求相对应。此外,与密歇根理工大学现有的NSF本科生研究经验(REU)网站、NSF/NSA GenCyber Camp以及其他涉及K-12、本科生和研究生以及STEM中历史上被边缘化的群体的项目合作开发的几项外展和培训活动将提供研究活动与户外活动的无缝结合。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dukka KC其他文献

Dukka KC的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dukka KC', 18)}}的其他基金

III: Medium: Collaborative Research: Multi-level computational approaches to protein function prediction
III:媒介:协作研究:蛋白质功能预测的多级计算方法
  • 批准号:
    2210356
  • 财政年份:
    2021
  • 资助金额:
    $ 43.21万
  • 项目类别:
    Continuing Grant
Collaborative Research: ABI Development: Integrated platforms for protein structure and function predictions
合作研究:ABI开发:蛋白质结构和功能预测的集成平台
  • 批准号:
    2021734
  • 财政年份:
    2020
  • 资助金额:
    $ 43.21万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Multi-level computational approaches to protein function prediction
III:媒介:协作研究:蛋白质功能预测的多级计算方法
  • 批准号:
    1901086
  • 财政年份:
    2019
  • 资助金额:
    $ 43.21万
  • 项目类别:
    Continuing Grant
III: Medium: Collaborative Research: Multi-level computational approaches to protein function prediction
III:媒介:协作研究:蛋白质功能预测的多级计算方法
  • 批准号:
    2003019
  • 财政年份:
    2019
  • 资助金额:
    $ 43.21万
  • 项目类别:
    Continuing Grant
EAGER: A novel approach to improve template-based multi-domain protein structure prediction
EAGER:一种改进基于模板的多域蛋白质结构预测的新方法
  • 批准号:
    1647884
  • 财政年份:
    2016
  • 资助金额:
    $ 43.21万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Development: Integrated platforms for protein structure and function predictions
合作研究:ABI开发:蛋白质结构和功能预测的集成平台
  • 批准号:
    1564606
  • 财政年份:
    2016
  • 资助金额:
    $ 43.21万
  • 项目类别:
    Standard Grant

相似海外基金

Equipment: MRI: Track 1 Acquisition of NVIDIA DGX H100 GPU system for research and education at VCU
设备: MRI:轨道 1 采购 NVIDIA DGX H100 GPU 系统,用于 VCU 的研究和教育
  • 批准号:
    2316003
  • 财政年份:
    2023
  • 资助金额:
    $ 43.21万
  • 项目类别:
    Standard Grant
Equipment: MRI: Track 1 Acquisition of a GPU-Accelerated Computing Cluster for Advanced Optimization and Design in Multidisciplinary Research and Education
设备:MRI:Track 1 获取 GPU 加速计算集群,用于多学科研究和教育中的高级优化和设计
  • 批准号:
    2320649
  • 财政年份:
    2023
  • 资助金额:
    $ 43.21万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a GPU-based High Performance Computing Instrumentation for Smart City Research at Cleveland State University
MRI:克利夫兰州立大学为智能城市研究采购基于 GPU 的高性能计算仪器
  • 批准号:
    2215388
  • 财政年份:
    2022
  • 资助金额:
    $ 43.21万
  • 项目类别:
    Standard Grant
Research Infrastructure: MRI: Acquisition of a GPU Cluster to Advance the Land Grant Mission at Washington State University Using AI-Driven Research
研究基础设施:MRI:收购 GPU 集群,利用人工智能驱动的研究推进华盛顿州立大学的土地授予任务
  • 批准号:
    2216108
  • 财政年份:
    2022
  • 资助金额:
    $ 43.21万
  • 项目类别:
    Standard Grant
MRI: Acquisition of Cutting-Edge GPU and MPI Nodes for the Interdisciplinary Pitt Center for Research Computing
MRI:为跨学科皮特研究计算中心采购尖端 GPU 和 MPI 节点
  • 批准号:
    2117681
  • 财政年份:
    2021
  • 资助金额:
    $ 43.21万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a GPU/CPU computing cluster for research and education in computational chemistry and materials
MRI:收购 GPU/CPU 计算集群,用于计算化学和材料的研究和教育
  • 批准号:
    2117956
  • 财政年份:
    2021
  • 资助金额:
    $ 43.21万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a GPU Cluster for Multi-Disciplinary Research and Education at University of Nevada, Las Vegas
MRI:内华达大学拉斯维加斯分校收购 GPU 集群用于多学科研究和教育
  • 批准号:
    2117941
  • 财政年份:
    2021
  • 资助金额:
    $ 43.21万
  • 项目类别:
    Standard Grant
MRI: Acquisition of Dolly Sods GPU Cluster for Accelerated High-Performance Computing and Applications in Machine Learning and Artificial Intelligence in West Virginia
MRI:收购 Dolly Sods GPU 集群,以加速西弗吉尼亚州机器学习和人工智能的高性能计算和应用
  • 批准号:
    2117575
  • 财政年份:
    2021
  • 资助金额:
    $ 43.21万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a High-Performance GPU Cluster for Research and Education
MRI:采购用于研究和教育的高性能 GPU 集群
  • 批准号:
    2018575
  • 财政年份:
    2020
  • 资助金额:
    $ 43.21万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Heterogeneous Multi-GPU Cluster to Support Exploration at Scale
MRI:获取异构多 GPU 集群以支持大规模探索
  • 批准号:
    1920020
  • 财政年份:
    2020
  • 资助金额:
    $ 43.21万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了